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Resumo

A predição da geração de energia solar é essencial para garantir a estabilidade das redes elétricas,
otimizar o planejamento energético e ampliar a integração de fontes renováveis de forma segura
e eficiente. Este trabalho apresenta estudo sobre a utilização de algoritmos de aprendizado de
máquina na predição de energia solar fotovoltaica. Foram analisados os algoritmos Árvore
de Decisão (AD), Floresta Aleatória (FA) e Perceptron Multicamada (PM), bem como suas
combinações em modelos híbridos duplos e em uma configuração híbrida tripla. A pesquisa
explorou dados meteorológicos públicos de geração de energia solar de três locais distintos,
avaliados por meio das métricas de Erro Médio Absoluto (EMA), Raiz do Erro Quadrático
Médio (REQM) e Coeficiente de Determinação (R²). Os resultados indicam que os modelos
híbridos superaram os individuais, com destaque para a modelagem híbrida composta pela
Floresta Aleatória e Perceptron Multicamada, que apresentou reduções de até 12,5% no EMA,
melhorias de aproximadamente 6,6% no REQM e valores de R² superiores a 0,90 em todos
os locais. Embora o modelo triplo tenha alcançado desempenho próximo em alguns cenários,
não conseguiu superar o FA + PM de forma consistente. Os resultados revelam o potencial
das abordagens híbridas para aumentar a confiabilidade na predição de potência gerada por
sistemas fotovoltaicos, contribuindo positivamente para o planejamento e a operação de sistemas
energéticos sustentáveis.

Palavras-chave: Aprendizado de máquina; Energia solar fotovoltaica; Predição; Modelagem
híbrida.



Abstract

The prediction of solar energy generation is essential to ensure grid stability, optimize energy
planning, and enable the safe and efficient integration of renewable sources. This work presents
a study on the use of machine learning algorithms for photovoltaic solar energy prediction. The
algorithms Decision Tree (DT), Random Forest (RF), and Multilayer Perceptron (MLP) were
analyzed, as well as their combinations in dual hybrid models and a triple hybrid configuration.
The research utilized public meteorological and solar generation datasets from three distinct
locations, evaluated using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and Coefficient of Determination (R²) metrics. The results indicate that the hybrid models
outperformed the individual ones, with emphasis on the hybrid model composed of Random
Forest and Multilayer Perceptron (Model 6), which achieved reductions of up to 12.5% in
MAE, improvements of approximately 6.6% in RMSE, and R² values above 0.90 across all sites.
Although the triple hybrid model achieved comparable performance in some scenarios, it did
not consistently surpass Model 6. The results demonstrate the potential of hybrid approaches to
enhance the reliability of photovoltaic power generation prediction, contributing positively to the
planning and operation of sustainable energy systems.

Keywords: Machine learning; Photovoltaic solar energy; Forecasting; Hybrid modeling.
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1
Introdução

Com o aumento da demanda energética mundial, a eletricidade tornou-se indispensável
para suprir as necessidades de uma sociedade moderna e globalizada. Nesse cenário, a integração
de fontes renováveis às redes elétricas surge como alternativa promissora do ponto de vista
energético. No entanto, essa integração apresenta alta complexidade devido à natureza variável e
imprevisível dessas fontes (Impram; Nese; Oral, 2020; Lara-Fanego et al., 2012; Gao; Wang;
Shen, 2020; Espinar et al., 2010). Essa irregularidade resulta em desafios como a dificuldade de
monitorar o balanço entre entrada e saída de energia, flutuações de tensão, perda de qualidade e
instabilidade no fornecimento (Anderson; Leach, 2004; Moreno-Munoz et al., 2008).

Nesse contexto, entre as fontes de energia renovável, a energia solar se destaca por
seu potencial de contribuição para um futuro sustentável (Lorenz et al., 2009). Os sistemas
fotovoltaicos constituem uma das principais soluções para mitigar impactos das mudanças
climáticas e promover práticas ambientalmente responsáveis (Victoria et al., 2021).

Entretanto, geração de energia a partir da luz solar é fortemente influenciada por variáveis
meteorológicas incertas e incontroláveis, como temperatura do ar, cobertura de nuvens, irradiação
difusa, direta, extraterrestre e em superfície horizontal. Tais fatores impactam não apenas o
desempenho energético, mas também a viabilidade econômica e a confiabilidade operacional
dos sistemas fotovoltaicos (Malvoni; De Giorgi; Congedo, 2017; Pierro et al., 2022).

Diante desses desafios, para garantir integração eficiente das fontes renováveis à rede
elétrica, é essencial obter estimativas precisas de geração (Yang et al., 2021). A predição da
energia solar fotovoltaica consiste em estimar a quantidade de energia que será produzida em um
determinado intervalo de tempo. Essa capacidade de predição possibilita aos operadores agir de
forma proativa diante de interrupções ou variações no fornecimento (Gaboitaolelwe et al., 2023).

Nesse sentido, modelos baseados em aprendizado de máquina têm demonstrado resulta-
dos promissores na predição de energias renováveis (Das et al., 2018). Por meio de algoritmos
capazes de identificar padrões e relações nos dados sem necessidade de programação explícita,
esses modelos constroem predições mais precisas, contribuindo para a gestão otimizada das
redes elétricas (Leva et al., 2017).

Além disso, para aprimorar o desempenho preditivo, é fundamental detectar e eliminar
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outliers nos conjuntos de dados utilizados no treinamento dos modelos. Considerando esse
cenário, o objetivo geral deste trabalho é implementar e avaliar os algoritmos de aprendizagem
de máquina Árvore de Decisão, Floresta Aleatória e Perceptron Multicamada para predição de
energia solar fotovoltaica a partir de dados meteorológicos públicos, considerando o impacto da
remoção de anomalias sobre a precisão dos modelos preditivos.

Os objetivos específicos incluem: (i) implementar os algoritmos de aprendizagem de
máquina Árvore de Decisão (AD), Floresta Aleatória (FA) e Perceptron Multicamada (PM),
individualmente e em combinação, utilizando dados meteorológicos públicos, (ii) analisar o
impacto da remoção de anomalias com a técnica de Floresta de Isolamento, e (iii) avaliar o
desempenho preditivo dos modelos individuais e híbridos por meio das métricas de Erro Absoluto
Médio (EAM), Raiz do Erro Quadrático Médio (REQM) e Coeficiente de Determinação (R²).

Esse trabalho está organizado em 5 (cinco) capítulos. No Capítulo 1, é apresentada a
introdução ao tema, na qual se discute a relevância da predição da geração de energia solar, a
importância das técnicas de aprendizado de máquina e as principais contribuições propostas
neste estudo. O Capítulo 2 aborda os conceitos fundamentais, além de discutir trabalhos
relacionados. Os materiais e métodos são descritos no Capítulo 3, enquanto o Capítulo 4
apresenta o processamento dos dados, a implementação e a avaliação dos algoritmos segundo
as métricas adotadas. Por fim, o Capítulo 5 expõe a conclusão e apresenta recomendações para
trabalhos futuros.
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2
Referencial Teórico

Este capítulo tem como objetivo abordar conceitos fundamentais de energia solar foto-
voltaica, incluindo o processo de conversão de energia, fatores de eficiência e diferentes tipos
de sistemas fotovoltaicos existentes. Em seguida, são explorados os princípios da Inteligência
Artificial (IA), com foco em aprendizado de máquina, através dos paradigmas de aprendizado
supervisionado e não supervisionado. De forma complementar, é abordado o processo de treina-
mento de modelos e os tipos de modelos físicos, bem como os algoritmos Árvore de Decisão,
Floresta Aleatória e Perceptron Multicamada. O Capítulo também discute desafios existentes,
como overfitting e variância, e apresenta as principais métricas utilizadas para a avaliação de
desempenho dos modelos de predição de séries temporais. Finalmente, é realizada uma análise de
trabalhos correlatos, contextualizando a pesquisa na área de predição de sistemas fotovoltaicos.

2.1 Energia Solar Fotovoltaica

Energia solar fotovoltaica é definida como a energia obtida a partir da luz emitida
pelo Sol (Bayod-Rújula, 2019). Uma das formas mais eficientes de converter essa energia em
eletricidade é através do uso de células fotovoltaicas, dispositivos semicondutores projetados para
transformar diretamente a luz solar em energia elétrica. Esse processo ocorre por meio do "efeito
fotovoltaico", fenômeno no qual a radiação solar estimula elétrons do material semicondutor,
gerando corrente elétrica. Além do uso direto do efeito fotovoltaico, sistemas de energia solar
podem ser divididos em duas categorias solar térmica e solar elétrica. A energia solar térmica
utiliza o calor do sol diretamente, sendo amplamente empregada para aquecer água em residências
e piscinas. A energia solar elétrica converte a luz solar em eletricidade, também por meio do
efeito fotovoltaico, utilizando células solares (Singh, 2013).

Quanto à configuração, sistemas fotovoltaicos podem ser configurados de diversas formas.
Há sistemas autônomos, que funcionam de forma independente da rede elétrica, sistemas para
veículos solares, e sistemas conectados à rede elétrica, que injetam a energia gerada no sistema
de distribuição (Singh, 2013). Em locais onde o acesso à rede elétrica convencional é inviável,
sistemas autônomos são utilizados para suprir as necessidades energéticas em localizações
remotas (Gayen; Chatterjee; Roy, 2024). Esses sistemas, por não estarem conectados à rede
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elétrica, apresentam diversidade elevada em tamanho e possibilidades de uso (Singh, 2013).
Em cenários conectados à rede, a energia gerada pelas células solares é convertida por

meio de inversores e integrada ao sistema de distribuição. Essa tecnologia tem demonstrado sua
necessidade, especialmente em situações de emergência, fornecendo energia quando o serviço
da concessionária é interrompido (Singh, 2013). Além disso, vem sendo amplamente utilizada a
produção em larga escala visando a diminuição de emissão de gases do efeito estufa e o bem
estar ambiental (Gayen; Chatterjee; Roy, 2024) (Victoria et al., 2021).

2.2 Inteligência Artificial

A Inteligência Artificial (IA) é uma área da Ciência da Computação que permite o desen-
volvimento de sistemas que podem realizar tarefas de forma inteligente, simulando os processos
cognitivos humanos (Duan; Da Xu, 2012). Suas técnicas apresentam diversas vantagens, in-
cluindo a capacidade de generalizar informações, lidar com múltiplas variáveis simultaneamente,
integrar conhecimentos físicos em modelos e identificar padrões valiosos a partir de grandes
volumes de dados (Das et al., 2018).

Figura 2.1: Pilares da paradigma de Inteligência Artificial

A Figura 2.1, apresenta os principais pilares que sustentam os sistemas de IA contempo-
râneos. O Big Data fornece grandes volumes de informações, essenciais para o treinamento de
modelos preditivos, enquanto os algoritmos processam esses dados e definem regras que orientam
o comportamento das aplicações. O Aprendizado de Máquina permite que os sistemas melhorem
seu desempenho com base em padrões extraídos dos dados e o Processamento de Linguagem
Natural torna possível a interpretação e geração da linguagem humana, viabilizando interfaces
intuitivas entre homem e máquina. Além disso, a infraestrutura é sustentada pelo Hardware,
que oferece o poder computacional necessário para aplicações da IA, e a Visão Computacional
permite que sistemas interpretem imagens e vídeos, sendo aplicada em reconhecimento facial,
análise de ambientes e automação (Zhang; Lu, 2021).
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2.2.1 Aprendizado de Máquina

No âmbito da Inteligência Artificial, o aprendizado de máquina permite construção de
sistemas que podem aprender por meio de dados. Com isso, computadores podem adquirir a ca-
pacidade de realizar tarefas sem a necessidade de serem explicitamente programados (Ray, 2019).
Por meio dessa abordagem, modelos de aprendizado de máquina são amplamente utilizados
para identificar padrões entre entrada e saída. Essa característica permite sua aplicabilidade em
gama variada de problemas, por exemplo, o reconhecimento de padrões, resolução de impasses
em classificação e desafios de predição (Voyant et al., 2017). Uma característica dos modelos
de aprendizagem de máquina é a dependência de uma base de dados significante, pois esses
modelos dependem diretamente da qualidade dos dados utilizados, o que torna fundamental a
escolha e o preparo adequado (Gaboitaolelwe et al., 2023).

Nesse contexto, dados de treinamento consistem de conjunto de exemplos utilizados para
ensinar o modelo. Cada exemplo é formado por um par, onde há um objeto de entrada (input) e
o valor de saída desejado (output). Esse conjunto de padrões permite que o modelo aprenda a
identificar relações entre dados de entrada e suas respectivas saídas, ajustando seus parâmetros
para realizar predições ou classificações com base no aprendizado adquirido (Voyant et al., 2017).
Para que essas predições sejam precisas, é fundamental um conjunto de dados de boa qualidade,
com atributos apropriados que contribuam para a identificação de padrões relevantes (Gupta
et al., 2021).

O processo de treinamento, este envolve a aplicação de modelos de aprendizado de
máquina sobre um conjunto de dados previamente dividido em duas partes, que podem variar
em tamanho dependendo do objetivo e base de dados. Aproximadamente 70% dos dados
disponíveis são utilizados para treinar o modelo, permitindo aprendizado de padrões e ajuste de
parâmetros. Os 30% restantes são reservados para a aplicação real e avaliação, sendo essas as
etapas em que se avalia o resultado e desempenho do modelo (Das et al., 2018). Dessa forma,
o processo de treinamento pode ser feito seguindo diferentes paradigmas de aprendizado, que
se diferenciam principalmente pela forma como os dados de entrada e saída são apresentados
ao modelo. Entre esses paradigmas, temos o aprendizado supervisionado e não supervisionado,
nos quais o treinamento é realizado com base em dados não rotulados ou previamente rotulados,
respectivamente.

2.2.1.1 Aprendizado Supervisionado e Não Supervisionado

No aprendizado supervisionado, o computador recebe entradas de exemplo e os resultados
esperados fornecidos por um guia (ou professor). A partir disso, a máquina aprende com
parâmetros definidos, como regras que relacionam dados de entrada e saída. Os dados são
rotulados para treinar o modelo e permitir predição com base no conhecimento aprendido (Inman;
Pedro; Coimbra, 2013). Esse tipo de método necessita de orientação durante o treinamento, e
com os dados fornecidos, o modelo pode classificar informações em categorias específicas ou
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realizar predição numéricas (Gaboitaolelwe et al., 2023).
De acordo com a Figura 2.2, os dados de entrada são inseridos no treinamento do modelo,

representados pelas formas geométricas. Essas formas são rotuladas com uma saída esperada de
organização, permitindo que a máquina aprenda com parâmetros definidos e estabeleça regras
para relacionar entradas e saídas. Esse processo de treinamento com dados rotulados capacita o
modelo a realizar tarefas com base no conhecimento adquirido.

Figura 2.2: Fase de treinamento de aprendizado de máquina supervisionado.

Na fase de aplicação, apresentada na Figura 2.3, pode ser observada a aplicação de
um modelo já treinado. Esse modelo, ao ser alimentado com figuras geométricas, as organiza
com base no conhecimento adquirido durante o treinamento, aplicando regras aprendidas para
classificar e agrupar as formas corretamente de acordo com dados rotulados.

Figura 2.3: Fase de aplicação do aprendizado de máquina supervisionado.

O aprendizado não supervisionado utiliza dados não rotulados para ser treinado (Nguyen;
Müsgens, 2022). Isso exige que o modelo identifique padrões ocultos ou agrupamentos de forma
autônoma, sem informações prévias sobre saídas esperadas. Os algoritmos dessa abordagem
geram modelos capazes de analisar, agrupar e categorizar dados, além de detectar anomalias
(Gaboitaolelwe et al., 2023).

Conforme apresentado na Figura 2.4, formas geométricas não rotuladas, ou seja, aquelas
que não possuem dados de entrada, saída ou uma organização específica, são inseridas em um
modelo de aprendizado não supervisionado. Esse modelo busca identificar padrões e semelhanças
entre os dados, aprendendo com eles sem a necessidade de rótulos pré-definidos.
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Figura 2.4: Fase de treinamento de aprendizado de máquina não supervisionado.

Na Figura 2.5, é apresentada a aplicação do modelo que foi previamente treinado de
maneira não supervisionada. O modelo analisa as formas geométricas, identifica padrões e as
agrupa com base em semelhanças em comum.

Figura 2.5: Fase de aplicação do aprendizado de máquina não supervisionado.

2.2.1.2 Modelos Físicos, Baseados em Dados e Modelagem Híbrida

Estimativas de produção de energia solar podem ser feitas com várias metodologias, as
principais são modelos físicos e modelos de aprendizado de máquina. Sendo que a escolha do
modelo a ser seguido depende de quanto tempo se deseja prever a saída de potência (Voyant et al.,
2017). Os modelos físicos são baseados no comportamento do sistema de produção solar, levando
em consideração propriedades físicas básicas, como eficiência dos painéis, ângulo de incidência
da irradiação solar e o sombreamento dos painéis. Além disso, esses modelos incorporam
variáveis ambientais, como temperatura, cobertura de nuvens e umidade (Gaboitaolelwe et al.,
2023). Também são consideradas características específicas do sistema, como detalhes das
instalações, configurações elétricas, localização geográfica e aspectos técnicos (Dobos, 2014)
(Al-Dahidi et al., 2024).

Em contraste com os modelos físicos, modelos baseados em dados dependem de dados
históricos para fazer inferências, identificar padrões e estabelecer relações que podem gerar
predições. Eles se baseiam em estatística e algoritmos que aprendem com padrões e relações nos
dados. Esses modelos podem ser estatísticos ou de aprendizado de máquina (Al-Dahidi et al.,
2024).
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Os modelos estatísticos analisam dados históricos e, a partir disso, fazem estimativas fu-
turas. São utilizadas técnicas estatísticas e algoritmos matemáticos para ajustar dados históricos e
identificar relações entre diferentes variáveis. Diferentemente dos modelos de aprendizado de má-
quina, modelos estatísticos não fazem parte dessa categoria, pois se fundamentam exclusivamente
em métodos estatísticos.

Segundo Gaboitaolelwe et al. (2023), a principal diferença entre modelos estatísticos e
modelos de aprendizado de máquina, é a necessidade de intervenção humana. Modelos estatísti-
cos demandam atenção na seleção e planejamento de características. Por outro lado, o aprendi-
zado de máquina pode ser aplicado com dados brutos, sem necessidade de pré-processamento.

Buscando superar as limitações das abordagens individuais, sistemas híbridos, combinam
diferentes tipos de aprendizado de máquina para fazer predições, que podem ser modelos físicos
ou baseado em dados (Nguyen; Müsgens, 2022). O objetivo é equilibrar vantagens e mitigar
limitações de cada abordagem, embora isso possa acarretar custos computacionais elevados
(Voyant et al., 2017)(Gaboitaolelwe et al., 2023). Para Al-Dahidi et al. (2024), comparados
aos métodos tradicionais aplicados isoladamente, modelos híbridos oferecem resultados mais
precisos sem comprometer a confiabilidade das predições.

Figura 2.6: Representação da modelagem híbrida: as saídas de dois (ou mais) modelos distintos
são combinadas para geração do resultado.

Conforme ilustrado na Figura 2.6, é apresentada a arquitetura de um modelo híbrido, na
qual:

■ O Modelo 1 de ML gera uma primeira predição;

■ O Modelo 2, com abordagem distinta, produz uma segunda saída;

■ Os resultados são armazenados e combinados, gerando uma saída.

Dentro do contexto de modelagem híbrida, o Regressor por Votação, constitui método
que combina múltiplos modelos de regressão independentes com objetivo de produzir uma
estimativa. A abordagem é baseada no princípio de que diferentes modelos podem capturar
diferentes aspectos da estrutura dos dados, assim, ao integrar suas predições, obtem-se resultado
com menor variância e maior capacidade de generalização. Cada regressor produz uma predição
individual f m(x) e com isso o resultado é calculado pela média das predições individuais,
expresso como:
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ŷ(x) =
1
M

M

∑
m=1

fm(x)
�
 �	2.1

onde:

■ ŷ(x) representa o valor estimado da variável resposta para a amostra de entrada x;

■ M indica o número total de modelos de regressão;

■ m é o índice que identifica cada modelo individual, com m = 1,2, . . . ,M;

■ fm(x) denota a predição produzida pelo modelo de regressão para a entrada x;

■
1
M é a normalização da soma, resultando em uma média aritmética das predições.

2.2.1.3 Árvore de Decisão

A Árvore de Decisão é um modelo de aprendizado supervisionado que mapeia hierarqui-
camente um domínio de dados em um conjunto de respostas. Nesse sentido, o modelo divide
os dados recursivamente em subdomínios, garantindo que cada divisão maximize o ganho de
informação em relação ao nó anterior. O objetivo do algoritmo de otimização é encontrar a
melhor divisão possível. Além disso, na estrutura da árvore, cada nó interno representa uma
pergunta sobre uma característica dos dados, cada ramo corresponde a uma possível resposta e
cada nó folha indica uma decisão final ou classe de saída (Suthaharan; Suthaharan, 2016).

A Figura 2.7 ilustra um exemplo de aplicação da Árvore de Decisão. Inicialmente,
considera-se na raiz o conjunto de dados X = 3,5,6,8,9,10, onde cada elemento possui um
rótulo de classe correspondente R = 1,1,0,1,1,0. O primeiro critério de divisão utiliza a média
dos valores de X(6,8), separando os dados em dois subconjuntos: C0 = 3,5,6 (elementos
menores ou iguais a 6,8) e K0 = 8,9,10 (elementos maiores que 6,8). No entanto, como C0
ainda contém rótulos mistos (classes 1 e 0), aplica-se uma nova divisão usando sua média (4,6),
resultando no nó folha C1 = 3 (classe 1 pura) e no nó interno C2 = 5,6. Em seguida, este
subconjunto é dividido pela média 5,5, gerando os nós folha finais C3 = 5 (classe 1 pura) e
C4 = 6 (classe 0 pura). Desse modo, o processo recursivo de divisão garante que todos os nós
terminais alcancem pureza máxima em sua classificação.

No ramo direito da divisão inicial (valores maiores que 6,8) isola o subconjunto K0 =
8, 9, 10, onde rótulos correspondentes são R = 1, 1, 0. Visto que K0 também apresenta classes
mistas, calcula a média de seus elementos (9) para estabelecer um novo critério de separação.
A aplicação divide os dados em dois nós folhas definitivos: o K1 = 8, 9 (valores menores ou
iguais a 9), que resulta em uma classificação pura da classe 1, e o K2 = 10 (valor maior que
9), que isola a classe 0. Atingindo também homogeneidade total também neste lado da árvore,
completando a estruturação do modelo.
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Figura 2.7: Exemplo de aplicação do algoritmo Árvore de Decisão

No contexto da regressão, os modelos de árvores de decisão são conhecidos pela simplici-
dade e eficiência para lidar com grande número de possibilidades, para isso usamos algoritmos de
divisão e conquista, que faz uma divisão de dados em conjuntos menores. Contudo, é importante
destacar a dificuldade desse modelo em lidar com decisões em níveis mais baixos da árvore.
Formalmente, a estrutura lógica do modelo pode ser expressa pela Equação 2.2.

m(x) =
l

∑
i=1

ki · I(x ∈ Di)
�
 �	2.2

Onde:

■ m(x) Representa o valor predito para a entrada x;

■ ki Valor constante associado à folha, retorna a predição do nó;

■ Di Representação de nó da arvore;

■ I(x ∈ Di) Retorna 1 se x estiver em Di e 0 se não estiver presente.

Nesse sentido, o algoritmo de Partição Recursiva (PR) constrói a árvore de decisão
através de um processo recursivo de divisão do conjunto de treinamento em subconjuntos cada
vez menores (Suthaharan; Suthaharan, 2016). O método opera sobre pares de dados (x,y), onde
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x representa as características de entrada e y os valores alvo. Além disso, um aspecto importante
do algoritmo é o critério de parada, implementado através de um nó de teste t. Para que uma
amostra x seja direcionada a um determinado ramo da árvore, ela deve satisfazer a condição
ótima de divisão s∗ associada ao nó. Esse teste de decisão é necessário para o particionamento
hierárquico dos dados. Portanto, em um conjunto de dados D podemos ter duas opções: uma
que satisfaz o critério (Equação 2.3) e outra que não satisfaz (Equação 2.4). Essas condições são
usadas para melhor definição de divisão para um determinado nó.

D = {(xi,yi) : xi satisfaz s∗}
�
 �	2.3

D = {(xi,yi) : xi não satisfaz s∗}
�
 �	2.4

Para a construção de um modelo de regressão, é fundamental determinar os parâmetros
que minimizam o critério Mínimos Quadrados (MQ). O método dos mínimos quadrados é
um critério estatístico amplamente utilizado para ajustar modelos de regressão. Sua principal
finalidade é minimizar a soma dos quadrados das diferenças entre os valores observados e
os valores previstos pelo modelo. A fórmula dos quadrados mínimos pode ser expressa pela
Equação 2.5.

MQ =
1
n

n

∑
i=1

(yi − r(β ,xi))
2

�
 �	2.5

Onde:

■ MQ: Representa os mínimos quadrados;

■ n: Quantidade de dados de amostra;

■ yi: Rótulo de treinamento;

■ xi: Amostra para treinamento;

■ r(β ,xi): Representa a predição feita pelo modelo de regressão para a entrada x.

Com o objetivo de minimizar o valor esperado do erro quadrático, utiliza-se Kl que é
dado pela Equação 2.6:

Kl =
1
nl

∑
Dl

yi
�
 �	2.6

Onde:

■ Kl: Constante;

■ yi: Dado rotular;
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■ nl: Número de exemplos em uma folha;

■ Dl Conjunto de exemplos que caem na folha l.

Para avaliar os testes que otimizam a precisão da árvore, podemos quantificar o erro
associado a cada nó t por meio da Equação 2.7:

Err(t) =
1
nt

∑
Dt

(yi − kt)
2

�
 �	2.7

Onde:

■ Err(t): Representa o erro do nó analisado;

■ nt : Quantidade de dados da interação;

■ yi: Dado rotular;

■ ki: Erro quadrático minimizado dado pela Equação 2.6.

■ Dt representa o conjunto de dados presente no nó t

A fim de realizar uma divisão binária, ou seja, particionamento do espaço de caracte-
rísticas em dois subconjuntos distintos, para isso, implementamos a regra de divisão criteriosa.
Esta regra tem como objetivo principal minimizar o erro de predição da árvore resultante desse
particionamento. Formalmente, definimos o erro da divisão s através da Equação 2.8:

Err(s, t) =
ntl
nt

·Err(tl)+
ntR
nt

·Err(tR)
�
 �	2.8

Onde:

■ Err(s, t): Erro de divisão;

■ t: O nó atual antes da divisão;

■ s: Erro de uma divisão candidata;

■ tl: Nó à esquerda depois da divisão que contém os dados que satisfazem a condição;

■ tr: Nó à direita que contém os dados que não satisfazem a condição;

■ nt : número de exemplos em t;

■ ntl : Número de exemplos de nós esquerdos;

■ ntR: Número de exemplos de nós direitos;

■ Err(tl) o erro calculado do nó esquerdo;
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■ Err(tr) o erro calculado do nó direito.

Dessa forma, pode-se determinar a melhor divisão para um nó t dado um conjunto s de
possíveis divisões. Esse critério orienta a escolha das divisões nos nós internos da árvore de
regressão. A cada iteração do algoritmo de partição recursiva, são testadas todas as divisões
possíveis das variáveis, conforme Equação 2.9.

∆Err(s, t) = Err(t)−Err(s, t)
�
 �	2.9

Onde:

■ ∆Err(s, t): Melhor divisão;

■ s: Erro de uma divisão candidata;

■ t: O nó atual antes da divisão;

■ Err(t): Erro médio de um nó expresso pela Equação 2.7;

■ Err(s, t): Erro de divisão expresso pela Equação 2.8.

Esse critério orienta a escolha das divisões nos nós internos da árvore de regressão. A
cada iteração do algoritmo de partição recursiva, são testadas todas as divisões possíveis das
variáveis. Além disso também devemos definir uma profundidade máxima, que vamos testando
ao decorrer de testes do modelo.

2.2.1.4 Floresta Aleatória

A Floresta Aleatória é um método de aprendizado de máquina supervisionado que se
destaca tanto em tarefas de classificação quanto de regressão (Al-Dahidi et al., 2024). Nesse
contexto, essa técnica utiliza um conjunto de árvores de decisão para produzir predições mais
precisas e estáveis do que modelos baseados em uma única árvore (Gaboitaolelwe et al., 2023)
(Al-Dahidi et al., 2024).

O princípio da Floresta Aleatória consiste na combinação de múltiplas árvores de regres-
são, onde cada árvore é treinada em um subconjunto aleatório dos dados de treinamento. Além
disso, a cada divisão de um nó da árvore, apenas um subconjunto aleatório de características é
considerado, o que aumenta a diversidade entre as árvores e reduz a correlação entre elas. Como
resultado, a predição final do modelo é obtida pela média das predições individuais de todas
as árvores, resultando em um modelo generalizado e menos suscetível a overfitting (Al-Dahidi
et al., 2024).

O overfitting é considerado um desafio em aprendizado de máquina. Esse fenômeno
ocorre quando um modelo se ajusta excessivamente aos dados de treinamento, a ponto de perder
a habilidade de se aplicar a dados novos, resultando em um desempenho inferior nos testes (Ying,
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2019). Em vez de identificar padrões úteis, o modelo acaba "decorando"os dados, incluindo
variações e elementos irrelevantes, que não são representativos do comportamento real dos dados.

Esse problema pode ser visto como uma falta de equilíbrio entre a capacidade do modelo
de se ajustar bem aos dados observados e sua habilidade de fazer predições eficazes com
dados inéditos (Ying, 2019). Quando o overfitting ocorre, o modelo pode ter um desempenho
excepcional nos dados de treinamento, mas não consegue generalizar corretamente para o
conjunto de teste, o que leva a uma queda de precisão em novas situações.

As Árvores de Decisão individuais tendem a se ajustar excessivamente aos dados de
treinamento, capturando ruídos e particularidades. Formalmente, a Equação 2.10 representa o
funcionamento da Floresta Aleatória.

RF =
1
n

n

∑
i=1

AD
�
 �	2.10

Onde:

■ RF: Representa a Floresta Aleatória;

■ n: Número de elementos da iteração;

■ AD: Representa a predição realizada pelo algoritmo.

2.2.1.5 Perceptron Multicamada

O Perceptron Multicamada é uma rede neural composta por várias camadas de neurônios
interconectados. Esses neurônios utilizam funções de ativação não lineares, permitindo que a
rede reconheça e interprete padrões complexos presentes nos dados. De modo geral, a rede
é estruturada em três camadas: (i) entrada, onde são inseridas as variáveis independentes, (ii)
ocultas, responsáveis pelos cálculos e transformações dos dados, e (iii) saída, que é responsável
por gerar as predições (Al-Dahidi et al., 2024).

Matematicamente, o funcionamento do Perceptron Multicamada é apresentado na Equa-
ção 2.11.

ŷ = fa

[
n

∑
i=1

wi

(
m

∑
j=1

w jxi +b1

)
+b2

] �
 �	2.11

Na Equação 2.11, fa representa a função de ativação do neurônio oculto, denominada
Leaky Rectified Linear Unit (Leaky ReLU) (Al-Dahidi et al., 2024). Além disso, os parâmetros
m e n correspondem, respectivamente, ao número de neurônios nas camadas ocultas e de saída.
Os pesos das conexões são indicados por wi e w j, enquanto os vieses das camadas de entrada e
saída são representados por b1 e b2.

O processo de aprendizado da rede é realizado por meio do método de retropropagação do
erro, que ajusta os pesos e vieses com base nas informações mais recentes, buscando minimizar
o erro na camada de saída. Com isso, a atualização dos pesos é descrita pela Equação 2.12.
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w∗ = w−α
∂e
∂w

�
 �	2.12

Onde:

■ ŷ é a predição do modelo;

■ w∗ é o novo peso atualizado;

■ w representa o peso anterior;

■ α é a taxa de aprendizado;

■
∂e
∂w indica a variação do erro em função do peso.

Por fim, a função de erro utilizada para avaliar o desempenho do modelo é expressa pela
Equação 2.13.

e =
1
2

n

∑
i=1

(ŷi − yi)
2

�
 �	2.13

Na Equação Equação 2.13, os parâmetros são definidos da seguinte forma:

■ e: erro médio quadrático do modelo;

■ ŷi: valor previsto pela rede;

■ yi: valor real esperado para a amostra;

■ n: número total de amostras;

■ (ŷi − yi)
2: erro ao quadrado entre o valor previsto e o valor real;

■
1
2 : fator utilizado para simplificar o cálculo da derivada na etapa de otimização.

2.2.2 Variância e Tratamento de Anomalias

Variância é uma medida que indica o quanto as predições de um modelo mudam quando
ele é treinado em diferentes conjuntos de dados. Modelos com alta variância são muito sensíveis
a pequenas flutuações nos dados de treinamento, o que significa que podem capturar até mesmo
o ruído presente nesses dados (Voyant et al., 2017) (Al-Dahidi et al., 2024).

Essa sensibilidade excessiva é uma característica de modelos complexos e está direta-
mente relacionada ao overfitting. A alta variância está associada ao comportamento instável do
modelo diante de dados diferentes. (Ying, 2019).

Anomalias são padrões em dados que não tem comportamento e estrutura normal (Liu;
Ting; Zhou, 2008). Podem ser induzidas nos dados por uma variedade de razões, como quebra
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de sistema ou erros de medição em sensores no geral, como meteorológicos e medidores de saída
de energia (Chandola; Banerjee; Kumar, 2009).

Adicionalmente, em cenários onde os dados envolvem múltiplas variáveis dependentes do
tempo, as técnicas de detecção de outliers devem considerar correlações entre essas variáveis para
identificar anomalias temporalmente alinhadas (Blázquez-García et al., 2021). Esses métodos
não apenas capturam desvios pontuais em uma única dimensão, mas também padrões atípicos
que afetam simultaneamente várias variáveis, indicando falhas ou eventos de maior impacto.

2.2.2.1 Floresta de Isolamento

A Floresta de Isolamento é um método de detecção de anomalias baseado em partições.
Esse algoritmo aproveita duas propriedades fundamentais das anomalias: São instâncias raras
(minoria) e possuem valores distintos das instâncias normais (Liu; Ting; Zhou, 2008). O método
constrói um conjunto de árvores de isolamento para um conjunto de dados, identificando as
discrepâncias com base no comprimento médio do caminho percorrido até o isolamento do
elemento. Nesse contexto, quanto menor o caminho, mais fácil é isolar a instância, indicando
um valor aleatório (outlier).

Na Figura 2.8, observa-se o processo de partição utilizado para isolar pontos específicos.
Por exemplo, o ponto (a) exigiu seis partições para ser isolado, enquanto o ponto (b) necessitou
de apenas uma. Dessa forma, percebe-se que (b), por ser isolado rapidamente, é uma anoma-
lia, enquanto (a), com maior dificuldade de isolamento, não apresenta características de uma
anomalia.

Figura 2.8: Processo de partição dos dados para encontrar discrepâncias.

O comprimento do caminho até o nó folha de uma instância é determinado pelo número
de divisões necessárias para isolá-la. A partir desse valor, é possível calcular a pontuação de
anomalia. Para isso, inicialmente, primeiro definimos alguns valores: h(x) representa o número
de divisões necessárias até que a instância alcance um nó folha. Esse valor depende da quantidade
de dados disponíveis, representada por n. No entanto, como a profundidade da árvore cresce
com o número de elementos, essa característica pode afetar a comparação entre instâncias (Liu;
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Ting; Zhou, 2008). Assim, para contornar esse problema, utilizamos um valor normalizado com
base na amostra n, expressa pela Equação 2.14:

c(n) = 2H(n−1)− 2(n−1)
n

�
 �	2.14

Onde:

■ H(n−1): representa o número harmônico estimado por ln(i)+0,5772156649;

■ c(n) corresponde ao comprimento médio normalizado esperado de h(x) para uma
instância ;

■ n: representa a quantidade de dados.

Com base nesse valor normalizado, pode-se calcular a pontuação de anomalia, conforme
apresentada pela Equação 2.15:

s(x,n) = 2
E(h(x))

c(n)

�
 �	2.15

Onde:

■ s(x,n): Pontuação de anomalia para uma instância x em um conjunto de dados com n
instâncias;

■ E(h(x)) corresponde à média de h(x) da instância x ao passar pelas árvores de
isolamento;

■ c(n) corresponde ao comprimento médio normalizado esperado de h(x) para uma
instância .

O valor de s(x) indica o grau de anomalia da instância x, considerando a média do
comprimento do caminho E(h(x)) percorrido nas árvores de isolamento (Liu; Ting; Zhou, 2008).
Quando E(h(x)) é pequeno, s(x) se aproxima de 1, o que indica um forte indício de anomalia.
(Liu; Ting; Zhou, 2008). Por outro lado, se E(h(x)) é aproximadamente igual a c(n), então
s(x) = 0.5, o que significa um comportamento comum (Liu; Ting; Zhou, 2008). Por fim, quando
E(h(x)) é grande, s(x) se aproxima de 0, indicando que a instância é normal (Liu; Ting; Zhou,
2008).

2.2.3 Métricas de Desempenho

A qualidade ou precisão das predições de saída fotovoltaica pode ser avaliada por meio da
diferença entre os valores reais e os valores preditos. Essa diferença é representada por métricas
de erro, que ajudam a quantificar o desempenho dos modelos de predição, fornecendo uma
medida clara sobre o quão próximos ou distantes as predições estão dos resultados observados
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(Nguyen; Müsgens, 2022). Com isso, para a avaliação dos modelos de aprendizado é necessário
a aplicação de métricas fundamentais, como EAM, REQM e R², uma vez que cada uma delas
oferece uma perspectiva única sobre a eficácia dos modelos (Al-Dahidi et al., 2024).

2.2.3.1 Erro Absoluto Médio (EAM)

EAM fornece medida direta da magnitude média dos erros, calculando a média das
diferenças absolutas entre os valores previstos e observados. Nesse contexto a métrica é essencial
para avaliar a precisão geral dos modelos, independentemente da direção do erro (Abumoh-
sen et al., 2024)(Al-Dahidi et al., 2024). Sua representação matemática é apresentada pela
Equação 2.16:

EAM =
1
n

n

∑
i=1

(|yi − ŷ|)
�
 �	2.16

Onde:

■ EAM: Erro Absoluto Médio;

■ n: Número de observações;

■ yi: Valor real da observação;

■ ŷi: Valor predito ou estimado.

2.2.3.2 Raiz do Erro Quadrático Médio (REQM)

REQM corresponde à raiz quadrada da média das diferenças quadráticas entre os valores
preditos e os valores reais. Além disso ele representa o desvio padrão dos erros e é amplamente
utilizado para identificar desvios em predições, sendo uma métrica útil para comparar o desempe-
nho de modelos aplicados a diferentes conjuntos de dados (Abumohsen et al., 2024)(Al-Dahidi
et al., 2024). Para calcular o REQM, utiliza-se a fórmula expressa pela Equação 2.17:

REQM =

√
∑

n
i=1(yi − ŷi)2

n

�
 �	2.17

Onde:

■ REQM: Raiz do Erro Quadrático Médio

■ n: número de observações

■ yi valor real da observação

■ ŷi valor predito ou estimado



2.3. TRABALHOS RELACIONADOS 35

2.2.3.3 Coeficiente de Determinação (R²)

R² avalia a proporção da variância da variável dependente que é explicada pelas variáveis
independentes utilizadas no modelo. Nesse sentido, essa métrica é particularmente importante
para compreender o quão bem o modelo se ajusta aos dados e sua capacidade de capturar as
relações existentes entre as variáveis (Abumohsen et al., 2024)(Al-Dahidi et al., 2024). Sua
expressão matemática é expressa pela Equação 2.18:

R2 = 1− ∑
n
i=i(ŷi − ȳ)2

∑
n
i=1(yi − ȳ)2

�
 �	2.18

Onde:

■ n: número de observações;

■ yi: valor real da observação;

■ ŷi: valor predito ou estimado;

■ ȳi: média dos valores reais.

2.3 Trabalhos Relacionados

Ledmaoui et al. (2023) realizaram estudo comparativo para medir a precisão da predição
de energia solar com base em dados coletados de uma usina que se encontra em Benguerir, Mar-
rocos. Os autores utilizaram como variáveis a produção de energia, a irradiância e a temperatura
ambiente. No entanto, o uso reduzido de parâmetros pode ser insuficiente para um treinamento
robusto de modelos de aprendizado de máquina. Na avaliação proposta, foram testados seis
algoritmos de aprendizado de máquina: Regressão por Vetores de Suporte (RVS), Redes Neurais
Artificiais (RNA), Árvore de Decisão, Floresta Aleatória, Modelo Aditivo Generalizado (MAG),
e Extreme Gradient Boosting (XGBOOST). O desempenho dos modelos foi aferido pelas mé-
tricas: Erro Quadrático Médio (EQM), EAM, Erro Absoluto Médio Escalonado (EAME) e R².
Os autores concluíram que as Redes Neurais obtiveram melhor desempenho entre os modelos
testados, demonstrando alta eficiência e precisão na predição de demandas energéticas. Contudo,
a remoção e tratamento de outliers não são devidamente apresentados e também inexiste o uso
de abordagens híbridas.

Em Al-Dahidi et al. (2024) é executado uma avaliação entre modelos de aprendizado
de máquina e seu impacto na predição de energia fotovoltaica. Os algoritmos testados foram:
Modelo Linear Robusto (MLR), Árvore de Decisão, Floresta Aleatória, RVS e Perceptron
Multicamada. Os autores utilizam quatro variáveis climáticas de análise: velocidade do vento,
umidade relativa, temperatura ambiente e irradiação solar. Além disso, os autores implementaram
o algoritmo de otimização de chimpanzés para seleção de hiperparâmetros. Para fins de avaliação
foram utilizadas as métricas EQM, EAM e R². Diferente de Ledmaoui et al. (2023), Al-Dahidi
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et al. (2024) apresentaram análise exploratória completa, aplicando técnicas de normalização e
utilizando de variáveis climáticas relevantes. Em relação aos resultados apontados evidenciou-
se que a radiação solar foi a variável mais influente na geração de energia. Em termos de
desempenho, o Perceptron Multicamada se destacou com o melhor resultado. Entretanto, cabe
ressaltar algumas limitações: (1) não foram exploradas abordagens híbridas, (2) não há uso de
técnicas de remoção de anomalias, e (3) os hiperparâmetros utilizados no modelo MLR não
foram disponibilizados.

No estudo de Abumohsen et al. (2024), o objetivo foi desenvolver modelos com alta
precisão para predizer a geração de energia solar. Para isso, foram aplicadas algumas técnicas,
incluindo aprendizado de máquina, aprendizado profundo e modelos híbridos. Entre os modelos
utilizados estão: Bi-directional LSTM (BI-LSTM), Gated Recurrent Units (GRU), Redes Neurais
Recorrentes (RNR), Floresta Aleatória, Máquina de Vetores de Suporte (MVS), BI-LSTM e Rede
Neural Convolucional (RNC). O modelo híbrido RNC-BI-LSTM-FA, apresentou os melhores
resultados em termos de precisão. Os dados utilizados no treinamento foram coletados entre 03
de junho de 2022 e 31 de julho de 2023, fornecidos pela Tubas Electricity Company, localizada
na Palestina. As variáveis consideradas incluíram: potência de saída, radiação solar, temperatura,
umidade, velocidade do vento e pressão atmosférica. Para avaliação dos modelos, foram adotadas
as métricas: EQM, EAM e R². Na análise comparativa, os modelos de aprendizado de máquina
demonstraram que a Floresta Aleatória superou a MVS em termos de precisão. Entre os modelos
de aprendizado profundo, como Long Short-Term Memory (LSTM), BI-LSTM, RNR e GRU, o
BI-LSTM se destacou com melhor desempenho. Em relação aos modelos híbridos, foi analisada
a combinação de LSTM-FA, bem como um segundo modelo composto por RNC-LSTM-FA. Ao
comparar modelos individuais e híbridos, é evidente que o modelo RNC-LSTM-FA apresentou
melhores resultados, confirmando a hipótese de que abordagens híbridas são mais eficazes do
que modelos isolados (Voyant et al., 2017). Apesar dos resultados obtidos, alguns pontos devem
ser destacados: (1) não foram disponibilizados os hiperparâmetros utilizados, o que limita a
replicabilidade dos experimentos, e (2) não há qualquer menção à aplicação de técnicas de
controle e remoção de anomalias.

No estudo de Amiri et al. (2024), foram implementados diversos modelos de aprendizado
de máquina, incluindo FA, RVS, PM, Regressão Linear (RL), Aprimoramento por Gradiente
(AG), K-Vizinhos Mais Próximos (KNN), Regressão Ridge (RR), Lasso Regressor (LASSO),
Regressão Polinomial (RP) e Extreme Gradient Boosting (XGBoost). Observa-se, que não foi
explorada nenhuma modelagem híbrida, e os hiperparâmetros utilizados não foram detalhados
pelos autores. Embora a aplicação isolada da Floresta Aleatória tenha apresentado desempenho
consistente, quando adotamos abordagens híbridas – em nossas próprias experimentações,
verificou-se uma tendência de redução tanto no EAM quanto no REQM. Considerando as
diferenças entre as bases de dados utilizadas, o modelo desenvolvido neste trabalho obteve
valores de EAM e REQM superiores aos registrados para o modelo isolado de Amiri et al.
(2024). Nesse sentido, a adoção de uma abordagem híbrida, caso fosse implementada por Amiri



2.3. TRABALHOS RELACIONADOS 37

et al. (2024), provavelmente resultaria em melhorias no desempenho. Como aspecto positivo
do trabalho de Amiri et al., destaca-se a implementação de solução para detecção e tratamento
de anomalias. A Floresta Aleatória se destacou como o modelo com melhor desempenho geral
entre os avaliados.

Tabela 2.1: Resultados de Amiri et al. (2024)

Métrica RP FA RVS MLP AG LR KNN RR LASSO XGBoost
RMSE 26.57 21.02 27.12 25.46 23.15 27.96 25.25 27.96 28.01 24.06
MAE 9.79 7.40 7.63 9.24 7.94 10.50 7.79 10.50 10.49 7.63
R2 0.93 0.96 0.93 0.94 0.95 0.92 0.94 0.92 0.92 0.94

Por fim, observa-se que nenhum dos trabalhos utilizou ou disponibilizou o conjunto
de dados em suas avaliações, o que representa uma limitação significativa, uma vez que o
compartilhamento dessa informação contribui com a possibilidade de novas interpretações
interdisciplinares, a preservação da integridade dos dados a longo prazo, otimização de recursos
e a transparência científica (Tenopir et al., 2011).
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3
Metodologia

Este capítulo descreve a metodologia adotada para o desenvolvimento e avaliação dos
modelos preditivos de geração de energia solar fotovoltaica. São detalhados os materiais utiliza-
dos, incluindo a base de dados pública e as ferramentas computacionais, bem como os métodos
empregados nas etapas de processamento de dados, tratamento de anomalias, configuração dos
modelos e avaliação de desempenho.

3.1 Descrição

Conforme ilustra a Figura 3.1, foram desenvolvidos sete modelos para analisar o de-
sempenho das técnicas de aprendizado de máquina empregadas. Nos Modelos 1, 2 e 3, cada
técnica, Árvore de Decisão (AD), Floresta Aleatória (FA) e Perceptron Multicamada (PM), foi
aplicada de forma independente, possibilitando avaliar o potencial preditivo individual de cada
abordagem. Já os Modelos 4, 5 e 6 investigaram combinações híbridas, correspondentes às
configurações AD e FA, AD e PM, e FA e PM, com o objetivo de verificar efeitos sinérgicos
entre as técnicas. Por fim, o Modelo 7 reuniu simultaneamente as três abordagens (AD, FA e
PM), configurando o cenário mais abrangente e integrador da metodologia proposta.

3.2 Processamento de Dados e Tratamento de Anomalias

Para o treinamento e validação dos modelos foi utilizada uma base de dados pública
disponível no site AI on Demand1. Os registros foram coletados em intervalos horários, abran-
gendo três localidades distintas, no período de 22 de novembro de 2022 a 2 de novembro de
2023. A base de dados contém, variáveis relacionadas às condições meteorológicas e aos níveis
de energia elétrica gerada, conforme descrito a seguir:

■ Temperatura do ar em graus Celsius (°C);

■ Quantidade de cobertura de nuvens no céu, expressa em percentual (%);

1AI on Demand

https://www.ai4europe.eu/research/ai-catalog/solar-energy-production-dataset?utm_source=chatgpt.com
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Figura 3.1: Esquema dos modelos de aprendizado de máquina.

■ Irradiância Difusa Horizontal: Radiação solar recebida em superfície horizontal
proveniente de todo o céu, incluindo luz direta e difusa. Medida em quilowatts por
metro quadrado (kW/m²);

■ Irradiância Direta Normal: Representa a radiação solar recebida diretamente do
sol em superfície perpendicular aos raios solares. Medida em quilowatts por metro
quadrado (kW/m²);

■ Irradiância Extraterrestre Horizontal: Quantidade de radiação solar que seria recebida
na superfície da Terra se não houvesse atmosfera. Medida em quilowatts por metro
quadrado (kW/m²);

■ Irradiância Global Horizontal: Radiação solar total recebida em uma superfície
horizontal, incluindo componentes diretos e difusos. É medida em quilowatts por
metro quadrado (kW/m²);

■ Produção – Local 1/Local 2/Local 3: Representa a produção de eletricidade dos
painéis solares no Local 1, Local 2 e Local 3, em quilowatt-horas (kWh);

O processamento de dados é etapa fundamental para garantir a qualidade do conjunto
de treinamento. Como discutido no Capítulo 2, essas informações devem estar em condições
ideais para evitar perdas na precisão dos resultados de predição. Técnicas de pré-processamento,
como a remoção de valores ausentes por meio da função Dropna da biblioteca Pandas, foram
aplicadas à base de dados. Posteriormente, os dados foram filtrados de modo a incluir apenas os
registros correspondentes ao período de incidência significativa de radiação solar, entre 06:00 e
18:00. Em seguida, utilizando a função Train Test Split da biblioteca Scikit-learn, o conjunto
de dados foi dividido em 75% para treinamento e 25% para teste. Além disso, todas variáveis
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foram avaliadas tanto individualmente quanto em conjunto, a fim de verificar o desempenho do
modelo em diferentes combinações. Para auxiliar compreensão de relações entre variáveis e
embasar a escolha das características para os modelos, foi realizada análise que incluiu a geração
de um mapa de calor de correlação entre todas variáveis numéricas do conjunto de dados a fim
de auxiliar nos testes das combinações.

Para o tratamento de anomalias, utilizou-se a técnica de Floresta de Isolamento. Inicial-
mente, foi aplicado o algoritmo Árvore de Decisão aos dados brutos. Em seguida, o procedimento
foi repetido, aplicando-se a Árvore de Decisão aos dados previamente tratados com Floresta de
Isolamento, a fim de verificar o efeito positivo do tratamento. Por fim, o desempenho entre os
dois cenários foi comparado, através das métricas de desempenho EAM, REQM e R².

Para a Floresta de Isolamento, a taxa de contaminação foi testada individualmente em
cada modelo, com objetivo de identificar o valor ideal para a detecção de outliers. Este parâmetro
determina a porcentagem de observações do conjunto de dados que serão consideradas potenciais
anomalias. No Modelo 1, foi utilizada a taxa de contaminação de 0,10. No Modelo 2, a taxa foi
de 0,04. Para o Modelo 3, foi aplicada a taxa de 0,05. No Modelo 4, novamente foi utilizada a
taxa de 0,10. Já nos Modelos 5, 6 e 7, a configuração adotada foi de 0,075. Em todos os modelos,
foram utilizadas 100 árvores, considerando todos os atributos em cada divisão e até 256 amostras
por árvore.

3.3 Ajuste de Hiperparâmetros

Nos experimentos realizados, foram adotados os hiperparâmetros apresentados na Ta-
bela 3.1.Esses hiperparâmetros foram definidos com objetivo de otimizar a performance de cada
modelo na tarefa de predição.

Para a Árvore de Decisão, o critério de divisão utilizado foi o Erro Quadrático, o que
significa que a escolha das melhores divisões nos nós da árvore foi feita minimizando a soma
dos quadrados dos erros nos valores preditos. A profundidade máxima da árvore foi limitada a 6
níveis, evitando que o modelo se tornasse excessivamente complexo e se ajustasse aos dados de
treinamento. Não foram impostas restrições para o número máximo de atributos ou folhas. O
tamanho mínimo de amostras necessárias para formar uma folha foi definido como 1, enquanto
o mínimo de amostras exigidas para realizar uma divisão foi 2.

No caso da Floresta Aleatória, foi adotada estratégia de amostragem com reposição, ou
seja, cada árvore da floresta foi treinada em uma amostra aleatória dos dados com repetições.
O critério de divisão utilizado dentro das árvores foi o Erro Absoluto, que orienta a formação
dos nós minimizando a soma das distâncias absolutas entre as previsões e os valores reais. A
profundidade máxima das árvores foi limitada a 7 e o número máximo de atributos considerados
por divisão foi definido como 1.0, indicando que todas as variáveis disponíveis puderam ser
consideradas. Assim como na Árvore de Decisão, não houve limitação no número de folhas de
amostras. O número mínimo de amostras por folha foi 1, com 2 como mínimo para permitir uma
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Tabela 3.1: Ajuste de hiperparâmetros dos modelos, detalhando valores definidos para cada
algoritmo.

Modelo Hiperparâmetro Valor

Árvore de Decisão

Critério de Divisão Erro Quadrático
Profundidade Máxima 6
Número Máximo de Atributos Nenhum
Número Máximo de Folhas Nenhum
Número Mínimo de Amostras por Folha 1
Número Mínimo de Amostras para Divisão 2
Método de Divisão Melhor

Floresta Aleatória

Amostragem com Reposição Verdadeiro
Critério de Divisão Erro Absoluto
Profundidade Máxima 7
Número Máximo de Atributos 1.0
Número Máximo de Folhas Nenhum
Número Máximo de Amostras Nenhum
Número Mínimo de Amostras por Folha 1
Número Mínimo de Amostras para Divisão 2
Número de Estimadores 100

Rede Neural

Função de Ativação ReLU
Regularização alpha 0,0001
Tamanho de Lote Auto
Tamanhos das Camadas Ocultas (100, 50)
Taxa de Aprendizado Constante
Taxa Inicial de Aprendizagem 0,001
Máximo de Funções Internas 15000
Número Máximo de Iterações 2000
Número de Iterações sem Mudança 10
Solver Adam
Tolerância 0,0001
Fração de Validação 0,1

divisão. A floresta consistiu 100 estimadores, ou seja, 100 árvores de decisão independentes.
Para a Rede Neural, adotou-se a função de ativação ReLU, amplamente utilizada por

permitir convergência eficiente em redes profundas. A regularização foi controlada pela variável
alpha com valor 0,0001, ajudando a evitar o overfitting. O tamanho do lote de treinamento foi
definido automaticamente, enquanto a arquitetura da rede incluiu duas camadas ocultas com
100 e 50 neurônios, respectivamente. A taxa de aprendizado foi mantida constante, com um
valor inicial de 0,001, e o solver escolhido para otimização foi o Adam, método eficiente para
grandes espaços de parâmetros. O algoritmo foi configurado para realizar até 2000 iterações,
com máximo de 15000 funções internas. O critério de tolerância para parada foi 0,0001, e o
treinamento pararia se não houvesse melhoria após 10 iterações consecutivas.
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3.4 Ferramentas Utilizadas

Para o desenvolvimento e a implementação dos experimentos, são utilizadas as principais
tecnologias descritas a seguir:

■ Ambiente de desenvolvimento: o ambiente de programação utilizado foi o Google

Colab2, plataforma colaborativa que oferece recursos para desenvolvimento de código
Python, além de integração com diversos serviços de armazenamento e execução em
nuvem.

■ Manipulação e análise de dados: para tratamento e manipulação dos dados, foram
utilizadas as bibliotecas Pandas3 (versão 2.2.2) e NumPy4 (versão 2.0.2), amplamente
utilizadas para análise de dados estruturados e computação numérica.

■ Visualização: para criação de gráficos e visualizações dos dados, foram empregadas
as bibliotecas Matplotlib5 (versão 3.10.0) e Seaborn6 (versão 0.13.2), que permitem
a construção de visualizações customizadas.

■ Aprendizado de máquina e pré-processamento: o pré-processamento de dados e a
aplicação dos algoritmos de aprendizado de máquina foram realizados utilizando a
biblioteca Scikit-learn7 (versão 1.6.1), que oferece gama de ferramentas para tarefas
de modelagem preditiva e avaliação de desempenho.

■ Versionamento de código: para controle de versão do código-fonte e colaboração
no desenvolvimento, foi utilizado o Git8, sistema distribuído para gerenciamento de
versões.

■ Armazenamento e disponibilização: o código final e os recursos utilizados foram
armazenados e disponibilizados através da plataforma Github9.

2https://colab.google/
3https://pandas.pydata.org
4https://numpy.org
5https://matplotlib.org
6https://seaborn.pydata.org
7https://scikit-learn.org/stable/
8https://git-scm.com
9https://github.com/Ruanrochafeitosa/paper-RJM-2026
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4
Resultados e Discussão

Este capítulo apresenta os resultado da aplicação e avaliação dos diferentes modelos de
aprendizado de máquina definidos no Capítulo 3.

4.1 Correlação de Variáveis

O mapa de correlação entre variáveis numéricas exibido na Figura 4.1 evidencia relações
de intensidade distintas. Em particular, observa-se que variáveis associadas à radiação solar,
como Irradiância Direta Normal, Irradiância Horizontal Extraterrestre e Irradiância Global
Horizontal, apresentam correlações muito altas (valores próximos a 0,9 ou superiores). Este
padrão sugere que essas variáveis capturam conceitos físicos sobre radiação solar que coexistem
e variam em conjunto no mesmo ambiente.

No que se refere à relação entre variáveis climáticas e produção, há correlações positivas
moderadas a altas entre as variáveis de radiância (DNI, EBH, GHI) e as variáveis de produção.
Este fato indica que condições de maior radiação solar tendem a associar-se a níveis maiores
de produção, o que é coerente com a hipótese física de que a geração depende da intensidade
da radiação disponível. Em contrapartida, a variável CloudOpacity, relacionada a opacidade de
nuvens, apresenta correlações negativas com a produção, o que sugere que maior cobertura ou
densidade de nuvens pode atenuar a produção elétrica, ainda que esse efeito não seja tão intenso
quanto as influências diretas da radiação.

4.2 Tratamento de Anomalias

Conforme ilustra a Figura 4.2, os resultados da Árvore de Decisão indicam que o EAM
apresentou uma queda expressiva em todos os três locais analisados após a aplicação da Floresta
de Isolamento, com reduções de 15,30%, 7,41% e 8,83%, respectivamente. De modo semelhante,
o REQM apresentou diminuições de 19,67% no Local 1, 5,72% no Local 2 e 9,07% no Local 3
após o tratamento das anomalias.

Ainda com base nos resultados exibidos na Figura 4.2, observou-se também avanço no
R² de 6,76% no Local 1. Por outro lado, no Local 2 houve uma redução de 2,25%, enquanto
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Figura 4.1: Correlação das variáveis numéricas da base de dados.
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Figura 4.2: Comparação do desempenho da Árvore de Decisão com e sem remoção de anomalias.

no Local 3 não foram registradas mudanças. Esses resultados sugerem que os dados do Local
1 continham quantidade considerável de anomalias que comprometiam o ajuste do modelo
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preditivo, enquanto, nos demais locais, a remoção de anomalias pode ter eliminado informações
relevantes para as previsões.

No segundo experimento, foi aplicada a Floresta Aleatória com e sem remoção de
anomalias. O comportamento observado foi similar ao teste anterior. O EAM diminuiu 12,9%
no Local 1, 2,5% no Local 2 e 7,9% no Local 3, como evidencia a Figura 4.3. De forma
complementar, o REQM foi reduzido em 15,3% no Local 1, 4,2% no Local 2 e 5,0% no Local 3.
Quanto ao R², houve discreto decréscimo de 1,1% no Local 3, nenhuma variação no Local 2 e
uma melhora de 3,8% no Local 1.
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Figura 4.3: Comparação do desempenho da Floresta Aleatória com e sem remoção de anomalias.

No terceiro experimento, foi aplicado o Perceptron Multicamada (MLP) com e sem
remoção de anomalias. Conforme mostra a Figura 4.4, o EAM apresentou redução em todos os
locais: no Local 1, houve queda de 9,0%; no Local 3, de 4,3%; no Local 2 ocorreu um aumento
de 2,1%. O REQM apresentou comportamento similar: no Local 1, reduziu-se 10,3%; no Local
3, 9,1%; enquanto no Local 2 observou-se diminuição de 3,4%.

Em relação ao R², conforme exposto na Figura 4.4, constatou-se aumento de 1,3% no
Local 1, piora de 2,2% no Local 2 e nenhuma variação (0%) no Local 3. Esses resultados
sugerem que, para o Perceptron Multicamada, em alguns casos a remoção de anomalias pode
eliminar dados relevantes ao ajuste do modelo, especialmente no Local 2, prejudicando tanto o
EAM e o REQM quanto o valor de R².

4.3 Modelos Individuais

A Tabela 4.1 sintetiza os resultados obtidos nos testes individuais por local de produção.
O Local 2 apresenta desempenho superior, evidenciado pelos menores valores de EAM e REQM,
bem como pelo valor mais elevado R², em comparação aos demais locais. No âmbito dos
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Figura 4.4: Comparação do desempenho do Perceptron Multicamada com e sem remoção de
anomalias.

modelos isolados, a técnica FA demonstrou maior eficácia, superando AD e PM. É possível que,
dado o caráter público da base de dados utilizada, a mesma contenha anomalias que AD não
conseguiu detectar ou eliminar de forma adequada.

Tabela 4.1: Desempenho dos Modelos 1, 2 e 3 segundo EMA, REQM e R², por local de produção.

Modelo
EMA (kWh) REQM (kWh) R²

Local 1 Local 2 Local 3 Local 1 Local 2 Local 3 Local 1 Local 2 Local 3
Modelo 1 38.58 12.64 18.60 59.62 18.95 27.93 0.74 0.86 0.86
Modelo 2 31.96 8.43 13.77 54.15 13.97 23.60 0.79 0.92 0.90
Modelo 3 33.93 9.11 14.36 53.57 14.12 23.55 0.79 0.92 0.90

Especificamente, o Modelo 1 (Árvore de Decisão) apresentou EAM de 38,58 kWh (Local
1), 12,64 kWh (Local 2) e 18,60 kWh (Local 3); REQM de 59,62 kWh, 18,95 kWh e 27,93 kWh,
respectivamente; e R² de 0,74, 0,86 e 0,86, nessa mesma ordem.

No Modelo 2 (Floresta Aleatória), observou-se redução do EAM para 31,96 kWh (queda
de 17,1 % em relação ao Modelo 1) no Local 1, 8,43 kWh (–33,3%) no Local 2 e 13,77 kWh
(–25,9%) no Local 3; o REQM diminuiu para 54,15 kWh (–9,2%), 13,97 kWh (–26,3%) e 23,60
kWh (–15,6%); enquanto o R² permaneceu em 0,79 no Local 1, mas subiu para 0,92 no Local 2
e 0,90 no Local 3, indicando maior consistência do modelo em ambos os locais.

Já o Modelo 3 (PM) registrou EAM de 33,93 kWh (–10,0%) no Local 1, 9,11 kWh
(–27,9%) no Local 2 e 14,36 kWh (–22,8%) no Local 3; REQM de 53,57 kWh (–10,2%), 14,12
kWh (–25,5%) e 23,55 kWh (–15,8%); e R² de 0,79 (Local 1), 0,92 (Local 2) e 0,90 (Local 3),
confirmando desempenho similar ao do Modelo 2.

A Figura 4.5, Figura 4.6 e Figura 4.7 ilustram comparativamente os valores reais e
preditos por meio de gráficos de linha, com a linha sólida azul representando os valores reais
e a linha amarela tracejada os valores estimados. A análise dos resultados, considerando o

https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model1.ipynb
https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model2.ipynb
https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model3.ipynb
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Modelo 1, Modelo 2 e Modelo 3 respectivamente, permite avaliar a proximidade entre as curvas
e, consequentemente, a capacidade preditiva de cada modelo ao replicar o comportamento dos
dados originais.
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Figura 4.5: Comparativo entre valores observados e estimados pelo modelo Árvores de Decisão
(AD)
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Figura 4.6: Comparativo entre valores reais e estimados pelo modelo Floresta Aleatória (FA)
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Figura 4.7: Comparativo entre valores reais e estimados pelo modelo Perceptron Multicamada
(PM)

4.4 Modelos Híbridos Duplos

A Tabela 4.2 apresenta o desempenho aferido dos Modelos 4, 5 e 6 segundo EMA,
REQM e R², por local de produção. Dentre os híbridos avaliados, o Modelo 6 apresentou o
melhor desempenho em todos os locais de produção.
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Tabela 4.2: Desempenho dos Modelos 4 a 6 segundo EMA, REQM e R², por local de produção.

Modelo
EMA (kWh) REQM (kWh) R²

Local 1 Local 2 Local 3 Local 1 Local 2 Local 3 Local 1 Local 2 Local 3
Modelo 4 29.25 7.93 13.61 46.75 13.61 21.93 0.80 0.90 0.89
Modelo 5 30.71 8.04 13.10 46.81 13.00 19.69 0.81 0.91 0.92
Modelo 6 28.85 7.26 11.46 46.01 12.15 18.40 0.81 0.92 0.93

Para o EAM, o Modelo 4 obteve valores de 29,25 kWh (Local 1), 7,93 kWh (Local 2)
e 13,61 kWh (Local 3). O Modelo 5 apresentou um aumento de aproximadamente 4,9% no
Local 1, 1,4% no Local 2, e redução de cerca de 3,8% no Local 3. A Figura 4.8 e a Figura 4.9
exibem o comportamento dos valores observados e estimados com a aplicação dos Modelos 4 e
5, respectivamente.
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Figura 4.8: Comparativo entre os valores observados e os estimados pelo modelo híbrido -
Árvores de Decisão + Floresta Aleatória.
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Figura 4.9: Comparativo entre os valores observados e os estimados pelo modelo híbrido -
Árvores de Decisão + Perceptron Multicamada.

O Modelo 6 reduziu o EMA em relação ao Modelo 5: cerca de 6,1% no Local 1, 9,7%
no Local 2 e 12,5% no Local 3. Em relação ao REQM, o Modelo 5 provocou pequenas variações
em comparação ao Modelo 4 (aproximadamente +0,1% no Local 1; redução de cerca de 4,5%
no Local 2; redução de aproximadamente 6,2% no Local 3). O Modelo 6 apresentou melhorias
adicionais com reduções de REQM de cerca de 1,7% (Local 1), 6,5% (Local 2) e 6,6% (Local
3).

https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model4.ipynb
https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model5.ipynb
https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model6.ipynb
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No que se refere ao coeficiente de determinação (R²), houve evolução consistente dos
modelos 4 para 5 e, em seguida, para o modelo 6: comparado ao Modelo 4, o Modelo 5 melhorou
em cerca de 1,3% (Local 1), 1,1% (Local 2) e 3,4% (Local 3); o Modelo 6 manteve ou ultrapassou
esses valores, com ganhos de 0,6%, 1,1% e 1,1%, respectivamente. Esses resultados confirmam
que o Modelo 6 é superior aos outros modelos híbridos avaliados nos três locais de produção.
A Figura 4.10 exibe o comparativo entre valores observados e estimados pelo modelo híbrido
duplo composto pelos algoritmos Floresta Aleatória e Perceptron Multicamada.
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Figura 4.10: Comparativo entre os valores observados e os estimados pelo modelo híbrido -
Floresta Aleatória (FA) + Perceptron Multicamada (PM)

4.5 Modelo Híbrido Triplo

Após avaliação dos modelos híbridos duplos, analisa-se o Modelo 7, que combina Árvore
de Decisão, Floresta Aleatória e Perceptron Multicamada. No que se refere ao EAM, o Modelo
7 alcançou 28,94 kWh no Local 1 com aumento de 0,31% em relação ao Modelo 6, 7,36 kWh no
Local 2 onde teve um aumento de 1,37% e 11,89 kWh no Local 3 com aumento de 3,75%. Já o
REQM foi de 47,50 kWh no Local 1 com elevação de 3,23%, 12,49 kWh no Local 2 aumento de
2,79% e 19,24 kWh no Local 3 crescimento de 4,56%. Por fim, o R² registrou 0,80 no Local
1 com uma redução de 1,23% e 0,92 no Local 2 que se manteve estável, enquanto no Local 3
houve uma pequena redução de 1,07%, atingindo 0,92. A Tabela 4.3 exibe o desempenho do
Modelo 7 segundo EMA, REQM e R², por local de produção, enquanto a Figura 4.11 exibe o
comparativo entre valores observados e estimados pelo modelo híbrido triplo composto pelos
algoritmos Árvore de Decisão, Floresta Aleatória e Perceptron Multicamada.

Como pode ser observado na Tabela 4.3, o EAM foi de 28,59 kWh no Local 1, re-
presentando redução de 0,9% em relação ao Modelo 6, 7,24 kWh no Local 2, com queda de
0,3%, e 11,69 kWh no Local 3, com aumento de 2%. O REQM atingiu 47,16 kWh no Local

Tabela 4.3: Desempenho do Modelo 7 segundo EMA, REQM e R², por local de produção.

Modelo
EMA (kWh) REQM (kWh) R²

Local 1 Local 2 Local 3 Local 1 Local 2 Local 3 Local 1 Local 2 Local 3
Modelo 7 28.94 7.36 11.89 47.50 12.49 19.24 0.80 0.92 0.92

https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model7.ipynb
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1, apresentando aumento de 2,5% em comparação ao Modelo 6, 12,36 kWh no Local 2, com
incremento de 1,7%, e 18,94 kWh no Local 3, registrando aumento de 3,0%. Em relação ao R²,
observou-se 0,81 no Local 1, mantendo o mesmo valor do Modelo 6, 0,92 no Local 2, também
estável, e 0,92 no Local 3, com leve redução de 1,1%. Esses resultados indicam que o Modelo 7
apresenta desempenho inferior em relação ao Modelo 6.
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Figura 4.11: Comparativo entre os valores observados e os estimados pelo modelo híbrido -
Árvores de Decisão + Floresta Aleatória + Perceptron Multicamada.

Os resultados indicam que o Modelo 7 apresentou desempenho inferior ao Modelo 6,
com pequenas melhorias pontuais no EAM, mas aumento no REQM e perda de ajuste no R².
Adicionalmente, nota-se diferença significativa entre os locais de produção. O Local 2 se mostrou
como o de melhor desempenho em todos os modelos avaliados, alcançando maiores valores
de R² e os menores erros, tanto no EAM quanto no REQM. Esse desempenho superior pode
ser justificado devido as variações nas medições dos sensores decorrentes das características da
localização.

Na comparação entre os modelos, observa-se que, quanto ao EAM, o Modelo 7 obteve
os menores valores nos Locais 1 e 2, enquanto no Local 3 o melhor resultado foi obtido pelo
Modelo 6. Já em relação ao REQM, o Modelo 6 apresentou os menores erros em todos os locais,
consolidando-se como o mais consistente nesse critério. Considerando o R², o Modelo 6 também
demonstrou desempenho superior frente aos demais.

A análise individual dos algoritmos indica que a Floresta Aleatória apresentou menor
erro absoluto, mantendo valores de R² semelhantes aos outros modelos, o que a torna o algoritmo
com melhor desempenho dentre as técnicas analisadas. Além disso, observa-se correlação
entre o desempenho dos modelos individuais e seus equivalentes híbridos: algoritmos mais
preditivos, quando combinados, tendem a gerar resultados superiores. Entretanto, nota-se que os
modelos que incorporaram a Árvore de Decisão como preditor, em especial os Modelos 4, 5 e 7,
apresentaram desempenho ligeiramente inferior, ainda que a diferença em relação aos demais
modelos seja pequena.
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5
Conclusão

Este trabalho investigou a aplicação de diferentes estratégias de aprendizado de máquina
na predição de energia solar fotovoltaica, considerando modelos individuais, através dos al-
goritmos de Árvore de Decisão, Floresta Aleatória e Perceptron Multicamada, e abordagens
híbridas resultantes das combinações em duplas e tripla. Os experimentos de análise preditiva
dos modelos foram realizados com dados reais de três locais distintos de produção, avaliados por
meio das métricas de EAM, REQM e R².

A remoção de anomalias possui potencial significativo de aprimorar o desempenho
preditivo de modelos, reduzindo erros medidos por EAM e REQM. Todavia, esse ganho não é
uniforme e depende do modelo e conjunto de dados. Enquanto modelos baseados em árvore
responderam, de forma favorável à eliminação de observações atípicas, apresentando reduções
expressivas nos erros e, em alguns casos, elevação do R², o algoritmo Perceptron Multicamada
demonstrou maior sensibilidade à supressão de dados extremos, chegando a apresentar piora do
R² ou aumento do erro em determinados locais. Esse comportamento evidencia que, embora
a remoção de anomalias seja estratégia relevante, sua aplicação deve ser feita com cautela
e avaliada localmente, especialmente em modelos mais complexos, para evitar exclusão de
informação relevante ao ajuste e à generalização preditiva.

Observou-se que os modelos híbridos superaram os individuais, destacando-se o com-
posto pela combinação entre Floresta Aleatória e Perceptron Multicamada, tornando-se a solução
mais consistente e equilibrada para predição de energia solar fotovoltaica no contexto analisado.
Esse modelo apresentou reduções significativas nos erros das predições e valores de R² superiores
a 0,90 em todos os locais de produção. Embora o Modelo, que combinou simultaneamente as
três técnicas, tenha mostrado bom desempenho em alguns cenários, ele não conseguiu superar o
FA + PM de forma consistente, sobretudo em termos de REQM e estabilidade dos erros.

A análise individual reforçou a importância da estratégia de Floresta Aleatória, que se
destacou pelo menor erro absoluto e pela manutenção de altos valores de R², confirmando-se
como o algoritmo mais preditivo. Consequentemente, verificou-se que modelos mais precisos
individualmente tendem potencializar positivamente os resultados quando integrados em arquite-
turas híbridas, embora a inclusão da Árvore de Decisão em algumas combinações tenha reduzido
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ligeiramente o desempenho.
Os resultados experimentais comprovam a relevância do uso de abordagens híbridas de

aprendizado de máquina para a predição da geração solar fotovoltaica, promovendo confiabi-
lidade no planejamento e operação de sistemas energéticos sustentáveis. Como direções para
trabalhos futuros, recomenda-se a investigação de arquiteturas alternativas, tais como o uso de
Redes Neurais Recorrentes (RNNs), e adoção de diferentes métodos de otimização e ajuste de
hiperparâmetros. Além disso, para fortalecer a robustez e ampliar a capacidade de generalização,
é desejável o uso desses modelos em bases de dados mais extensas e diversificadas.
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