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Resumo

A predi¢do da geracdo de energia solar € essencial para garantir a estabilidade das redes elétricas,
otimizar o planejamento energético e ampliar a integracdo de fontes renovaveis de forma segura
e eficiente. Este trabalho apresenta estudo sobre a utilizacdo de algoritmos de aprendizado de
maquina na predi¢io de energia solar fotovoltaica. Foram analisados os algoritmos Arvore
de Decisdao (AD), Floresta Aleatéria (FA) e Perceptron Multicamada (PM), bem como suas
combina¢des em modelos hibridos duplos e em uma configuracao hibrida tripla. A pesquisa
explorou dados meteorolégicos publicos de geracao de energia solar de trés locais distintos,
avaliados por meio das métricas de Erro Médio Absoluto (EMA), Raiz do Erro Quadrético
Médio (REQM) e Coeficiente de Determinacdo (R?). Os resultados indicam que os modelos
hibridos superaram os individuais, com destaque para a modelagem hibrida composta pela
Floresta Aleatdria e Perceptron Multicamada, que apresentou redugdes de até 12,5% no EMA,
melhorias de aproximadamente 6,6% no REQM e valores de R? superiores a 0,90 em todos
os locais. Embora o modelo triplo tenha alcan¢cado desempenho préximo em alguns cenérios,
ndo conseguiu superar o FA + PM de forma consistente. Os resultados revelam o potencial
das abordagens hibridas para aumentar a confiabilidade na predi¢ao de poténcia gerada por
sistemas fotovoltaicos, contribuindo positivamente para o planejamento e a operacdo de sistemas

energéticos sustentdveis.

Palavras-chave: Aprendizado de miquina; Energia solar fotovoltaica; Predicdo; Modelagem
hibrida.



Abstract

The prediction of solar energy generation is essential to ensure grid stability, optimize energy
planning, and enable the safe and efficient integration of renewable sources. This work presents
a study on the use of machine learning algorithms for photovoltaic solar energy prediction. The
algorithms Decision Tree (DT), Random Forest (RF), and Multilayer Perceptron (MLP) were
analyzed, as well as their combinations in dual hybrid models and a triple hybrid configuration.
The research utilized public meteorological and solar generation datasets from three distinct
locations, evaluated using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and Coefficient of Determination (R?) metrics. The results indicate that the hybrid models
outperformed the individual ones, with emphasis on the hybrid model composed of Random
Forest and Multilayer Perceptron (Model 6), which achieved reductions of up to 12.5% in
MAE, improvements of approximately 6.6% in RMSE, and R? values above 0.90 across all sites.
Although the triple hybrid model achieved comparable performance in some scenarios, it did
not consistently surpass Model 6. The results demonstrate the potential of hybrid approaches to
enhance the reliability of photovoltaic power generation prediction, contributing positively to the

planning and operation of sustainable energy systems.

Keywords: Machine learning; Photovoltaic solar energy; Forecasting; Hybrid modeling.
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Introducao

Com o aumento da demanda energética mundial, a eletricidade tornou-se indispensdvel
para suprir as necessidades de uma sociedade moderna e globalizada. Nesse cendrio, a integracio
de fontes renovdveis as redes elétricas surge como alternativa promissora do ponto de vista
energético. No entanto, essa integragcdo apresenta alta complexidade devido a natureza varidvel e
imprevisivel dessas fontes (Impram; Nese; Oral, 2020; Lara-Fanego et al., 2012; Gao; Wang;
Shen, 2020; Espinar et al., 2010). Essa irregularidade resulta em desafios como a dificuldade de
monitorar o balanco entre entrada e saida de energia, flutuagdes de tensdo, perda de qualidade e
instabilidade no fornecimento (Anderson; Leach, 2004; Moreno-Munoz et al., 2008).

Nesse contexto, entre as fontes de energia renovavel, a energia solar se destaca por
seu potencial de contribui¢do para um futuro sustentdvel (Lorenz et al., 2009). Os sistemas
fotovoltaicos constituem uma das principais solucdes para mitigar impactos das mudangas
climdticas e promover praticas ambientalmente responsdveis (Victoria et al., 2021).

Entretanto, geracdo de energia a partir da luz solar é fortemente influenciada por varidveis
meteoroldgicas incertas e incontroldveis, como temperatura do ar, cobertura de nuvens, irradiacao
difusa, direta, extraterrestre e em superficie horizontal. Tais fatores impactam nao apenas o
desempenho energético, mas também a viabilidade econdmica e a confiabilidade operacional
dos sistemas fotovoltaicos (Malvoni; De Giorgi; Congedo, 2017; Pierro et al., 2022).

Diante desses desafios, para garantir integracao eficiente das fontes renovaveis a rede
elétrica, € essencial obter estimativas precisas de geracdo (Yang et al., 2021). A predicao da
energia solar fotovoltaica consiste em estimar a quantidade de energia que serd produzida em um
determinado intervalo de tempo. Essa capacidade de predi¢do possibilita aos operadores agir de
forma proativa diante de interrup¢des ou varia¢des no fornecimento (Gaboitaolelwe et al., 2023).

Nesse sentido, modelos baseados em aprendizado de miquina tém demonstrado resulta-
dos promissores na predicdo de energias renovaveis (Das et al., 2018). Por meio de algoritmos
capazes de identificar padrdes e relagdes nos dados sem necessidade de programacao explicita,
esses modelos constroem predi¢des mais precisas, contribuindo para a gestdo otimizada das
redes elétricas (Leva et al., 2017).

Além disso, para aprimorar o desempenho preditivo, € fundamental detectar e eliminar
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outliers nos conjuntos de dados utilizados no treinamento dos modelos. Considerando esse
cendrio, o objetivo geral deste trabalho € implementar e avaliar os algoritmos de aprendizagem
de méquina Arvore de Decisdo, Floresta Aleatéria e Perceptron Multicamada para predicio de
energia solar fotovoltaica a partir de dados meteoroldgicos ptblicos, considerando o impacto da
remo¢do de anomalias sobre a precisdo dos modelos preditivos.

Os objetivos especificos incluem: (1) implementar os algoritmos de aprendizagem de
mdquina Arvore de Decisdo (AD), Floresta Aleatéria (FA) e Perceptron Multicamada (PM),
individualmente e em combinacao, utilizando dados meteoroldgicos publicos, (ii) analisar o
impacto da remocdo de anomalias com a técnica de Floresta de Isolamento, e (iii) avaliar o
desempenho preditivo dos modelos individuais e hibridos por meio das métricas de Erro Absoluto
Médio (EAM), Raiz do Erro Quadrético Médio (REQM) e Coeficiente de Determinagado (R?).

Esse trabalho estd organizado em 5 (cinco) capitulos. No Capitulo 1, é apresentada a
introdugdo ao tema, na qual se discute a relevancia da predicdo da geragdo de energia solar, a
importancia das técnicas de aprendizado de maquina e as principais contribui¢des propostas
neste estudo. O Capitulo 2 aborda os conceitos fundamentais, além de discutir trabalhos
relacionados. Os materiais € métodos sdo descritos no Capitulo 3, enquanto o Capitulo 4
apresenta o processamento dos dados, a implementacao e a avaliagdo dos algoritmos segundo
as métricas adotadas. Por fim, o Capitulo 5 expde a conclusdo e apresenta recomendagdes para

trabalhos futuros.
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Referencial Teorico

Este capitulo tem como objetivo abordar conceitos fundamentais de energia solar foto-
voltaica, incluindo o processo de conversao de energia, fatores de efici€ncia e diferentes tipos
de sistemas fotovoltaicos existentes. Em seguida, sdo explorados os principios da Inteligéncia
Artificial (IA), com foco em aprendizado de mdquina, através dos paradigmas de aprendizado
supervisionado e nao supervisionado. De forma complementar, é abordado o processo de treina-
mento de modelos e os tipos de modelos fisicos, bem como os algoritmos Arvore de Decisdo,
Floresta Aleatoria e Perceptron Multicamada. O Capitulo também discute desafios existentes,
como overfifting € variancia, e apresenta as principais métricas utilizadas para a avaliagao de
desempenho dos modelos de predi¢ao de séries temporais. Finalmente, é realizada uma andlise de

trabalhos correlatos, contextualizando a pesquisa na drea de predi¢do de sistemas fotovoltaicos.

2.1 Energia Solar Fotovoltaica

Energia solar fotovoltaica € definida como a energia obtida a partir da luz emitida
pelo Sol (Bayod-Rujula, 2019). Uma das formas mais eficientes de converter essa energia em
eletricidade € através do uso de células fotovoltaicas, dispositivos semicondutores projetados para
transformar diretamente a luz solar em energia elétrica. Esse processo ocorre por meio do "efeito
fotovoltaico", fendmeno no qual a radiacdo solar estimula elétrons do material semicondutor,
gerando corrente elétrica. Além do uso direto do efeito fotovoltaico, sistemas de energia solar
podem ser divididos em duas categorias solar térmica e solar elétrica. A energia solar térmica
utiliza o calor do sol diretamente, sendo amplamente empregada para aquecer 4gua em residéncias
e piscinas. A energia solar elétrica converte a luz solar em eletricidade, também por meio do
efeito fotovoltaico, utilizando células solares (Singh, 2013).

Quanto a configuracao, sistemas fotovoltaicos podem ser configurados de diversas formas.
H4 sistemas autdbnomos, que funcionam de forma independente da rede elétrica, sistemas para
veiculos solares, e sistemas conectados a rede elétrica, que injetam a energia gerada no sistema
de distribuicdo (Singh, 2013). Em locais onde o acesso a rede elétrica convencional € invidvel,
sistemas autdonomos sao utilizados para suprir as necessidades energéticas em localizagoes

remotas (Gayen; Chatterjee; Roy, 2024). Esses sistemas, por ndo estarem conectados a rede
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elétrica, apresentam diversidade elevada em tamanho e possibilidades de uso (Singh, 2013).
Em cendrios conectados a rede, a energia gerada pelas células solares € convertida por
meio de inversores e integrada ao sistema de distribui¢do. Essa tecnologia tem demonstrado sua
necessidade, especialmente em situacdes de emergéncia, fornecendo energia quando o servigo
da concessiondria € interrompido (Singh, 2013). Além disso, vem sendo amplamente utilizada a
producdo em larga escala visando a diminuicao de emissao de gases do efeito estufa e o bem

estar ambiental (Gayen; Chatterjee; Roy, 2024) (Victoria et al., 2021).

2.2 Inteligéncia Artificial

A Inteligéncia Artificial (IA) € uma drea da Ciéncia da Computag¢do que permite o desen-
volvimento de sistemas que podem realizar tarefas de forma inteligente, simulando os processos
cognitivos humanos (Duan; Da Xu, 2012). Suas técnicas apresentam diversas vantagens, in-
cluindo a capacidade de generalizar informacdes, lidar com miiltiplas varidveis simultaneamente,
integrar conhecimentos fisicos em modelos e identificar padrdes valiosos a partir de grandes
volumes de dados (Das et al., 2018).

Inteligéncia Artificial

S ——
— — — — — —
— — — — — —

L g
Big Data Algoritmos Aprendizado Analise de Hardware Visao

de Maquina Linguagem Computacional
Natural

Figura 2.1: Pilares da paradigma de Inteligéncia Artificial

A Figura 2.1, apresenta os principais pilares que sustentam os sistemas de IA contempo-
raneos. O Big Data fornece grandes volumes de informagdes, essenciais para o treinamento de
modelos preditivos, enquanto os algoritmos processam esses dados e definem regras que orientam
o comportamento das aplicacdes. O Aprendizado de Maquina permite que os sistemas melhorem
seu desempenho com base em padrdes extraidos dos dados e o Processamento de Linguagem
Natural torna possivel a interpretacdo e geracdo da linguagem humana, viabilizando interfaces
intuitivas entre homem e méaquina. Além disso, a infraestrutura é sustentada pelo Hardware,
que oferece o poder computacional necessario para aplicacdes da IA, e a Visao Computacional
permite que sistemas interpretem imagens e videos, sendo aplicada em reconhecimento facial,

andlise de ambientes e automacao (Zhang; Lu, 2021).
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2.2.1 Aprendizado de Maquina

No ambito da Inteligéncia Artificial, o aprendizado de maquina permite construgao de
sistemas que podem aprender por meio de dados. Com isso, computadores podem adquirir a ca-
pacidade de realizar tarefas sem a necessidade de serem explicitamente programados (Ray, 2019).
Por meio dessa abordagem, modelos de aprendizado de mdquina sdo amplamente utilizados
para identificar padrdes entre entrada e saida. Essa caracteristica permite sua aplicabilidade em
gama variada de problemas, por exemplo, o reconhecimento de padrdes, resolu¢do de impasses
em classificacdo e desafios de predi¢ao (Voyant et al., 2017). Uma caracteristica dos modelos
de aprendizagem de méquina € a dependéncia de uma base de dados significante, pois esses
modelos dependem diretamente da qualidade dos dados utilizados, o que torna fundamental a
escolha e o preparo adequado (Gaboitaolelwe et al., 2023).

Nesse contexto, dados de treinamento consistem de conjunto de exemplos utilizados para
ensinar o modelo. Cada exemplo é formado por um par, onde hd um objeto de entrada (input) e
o valor de saida desejado (output). Esse conjunto de padrdes permite que o modelo aprenda a
identificar relacoes entre dados de entrada e suas respectivas saidas, ajustando seus parametros
para realizar predi¢cdes ou classificagdes com base no aprendizado adquirido (Voyant et al., 2017).
Para que essas predi¢des sejam precisas, é fundamental um conjunto de dados de boa qualidade,
com atributos apropriados que contribuam para a identificacdo de padroes relevantes (Gupta
et al., 2021).

O processo de treinamento, este envolve a aplicacdo de modelos de aprendizado de
maéquina sobre um conjunto de dados previamente dividido em duas partes, que podem variar
em tamanho dependendo do objetivo e base de dados. Aproximadamente 70% dos dados
disponiveis sdo utilizados para treinar o modelo, permitindo aprendizado de padrdes e ajuste de
parametros. Os 30% restantes sdo reservados para a aplicagdo real e avaliacdo, sendo essas as
etapas em que se avalia o resultado e desempenho do modelo (Das et al., 2018). Dessa forma,
o processo de treinamento pode ser feito seguindo diferentes paradigmas de aprendizado, que
se diferenciam principalmente pela forma como os dados de entrada e saida sdo apresentados
ao modelo. Entre esses paradigmas, temos o aprendizado supervisionado e ndo supervisionado,
nos quais o treinamento € realizado com base em dados ndo rotulados ou previamente rotulados,

respectivamente.

2.2.1.1 Aprendizado Supervisionado e Nao Supervisionado

No aprendizado supervisionado, o computador recebe entradas de exemplo e os resultados
esperados fornecidos por um guia (ou professor). A partir disso, a maquina aprende com
parametros definidos, como regras que relacionam dados de entrada e saida. Os dados sdo
rotulados para treinar o modelo e permitir predicdo com base no conhecimento aprendido (Inman;
Pedro; Coimbra, 2013). Esse tipo de método necessita de orientacao durante o treinamento, e

com os dados fornecidos, o0 modelo pode classificar informacdes em categorias especificas ou
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realizar predicdo numéricas (Gaboitaolelwe et al., 2023).

De acordo com a Figura 2.2, os dados de entrada sio inseridos no treinamento do modelo,
representados pelas formas geométricas. Essas formas sao rotuladas com uma saida esperada de
organizacdo, permitindo que a maquina aprenda com parametros definidos e estabeleca regras
para relacionar entradas e saidas. Esse processo de treinamento com dados rotulados capacita o

modelo a realizar tarefas com base no conhecimento adquirido.

Dados de Dados de Saida
Entrada Esperados
. — Treinamento —

AGA AAA

Figura 2.2: Fase de treinamento de aprendizado de maquina supervisionado.

Na fase de aplicacdo, apresentada na Figura 2.3, pode ser observada a aplicacdo de
um modelo j4 treinado. Esse modelo, ao ser alimentado com figuras geométricas, as organiza
com base no conhecimento adquirido durante o treinamento, aplicando regras aprendidas para

classificar e agrupar as formas corretamente de acordo com dados rotulados.

Dados de
Entrada

. Aplicaca
o8- i . &

treinado

Resultado

Figura 2.3: Fase de aplicacio do aprendizado de maquina supervisionado.

O aprendizado ndo supervisionado utiliza dados nao rotulados para ser treinado (Nguyen;
Miisgens, 2022). Isso exige que o modelo identifique padrdes ocultos ou agrupamentos de forma
autdonoma, sem informagdes prévias sobre saidas esperadas. Os algoritmos dessa abordagem
geram modelos capazes de analisar, agrupar e categorizar dados, além de detectar anomalias
(Gaboitaolelwe et al., 2023).

Conforme apresentado na Figura 2.4, formas geométricas nao rotuladas, ou seja, aquelas
que ndo possuem dados de entrada, saida ou uma organizacao especifica, sdo inseridas em um
modelo de aprendizado ndo supervisionado. Esse modelo busca identificar padrdes e semelhancas

entre os dados, aprendendo com eles sem a necessidade de rétulos pré-definidos.
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Dados de Entrada
nao Rotulados

. A A Maquina

tenta

. aprender
AGA i

Figura 2.4: Fase de treinamento de aprendizado de maquina nao supervisionado.

Na Figura 2.5, é apresentada a aplicacdo do modelo que foi previamente treinado de
maneira ndo supervisionada. O modelo analisa as formas geométricas, identifica padroes e as

agrupa com base em semelhangas em comum.

Dados de
Entrada Grupo Grupo Grupo
. Similar 1 Similar 2 Similar 3
A maquina .
. . — procura por —»
padrdes . .

Figura 2.5: Fase de aplicacdo do aprendizado de maquina néo supervisionado.

2.2.1.2 Modelos Fisicos, Baseados em Dados e Modelagem Hibrida

Estimativas de produc¢do de energia solar podem ser feitas com vdarias metodologias, as
principais sdo modelos fisicos e modelos de aprendizado de maquina. Sendo que a escolha do
modelo a ser seguido depende de quanto tempo se deseja prever a saida de poténcia (Voyant et al.,
2017). Os modelos fisicos sdo baseados no comportamento do sistema de produc¢do solar, levando
em consideracdo propriedades fisicas basicas, como eficiéncia dos painéis, angulo de incidéncia
da irradiacdo solar e o sombreamento dos painéis. Além disso, esses modelos incorporam
varidveis ambientais, como temperatura, cobertura de nuvens e umidade (Gaboitaolelwe et al.,
2023). Também sdo consideradas caracteristicas especificas do sistema, como detalhes das
instalagdes, configuracoes elétricas, localizacao geografica e aspectos técnicos (Dobos, 2014)
(Al-Dahidi et al., 2024).

Em contraste com os modelos fisicos, modelos baseados em dados dependem de dados
histéricos para fazer inferéncias, identificar padroes e estabelecer relagdes que podem gerar
predicoes. Eles se baseiam em estatistica e algoritmos que aprendem com padrdes e relagdes nos
dados. Esses modelos podem ser estatisticos ou de aprendizado de mdquina (Al-Dahidi et al.,
2024).
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Os modelos estatisticos analisam dados histdricos e, a partir disso, fazem estimativas fu-
turas. Sao utilizadas técnicas estatisticas e algoritmos matemdticos para ajustar dados histéricos e
identificar relacdes entre diferentes varidveis. Diferentemente dos modelos de aprendizado de ma-
quina, modelos estatisticos ndo fazem parte dessa categoria, pois se fundamentam exclusivamente
em métodos estatisticos.

Segundo Gaboitaolelwe et al. (2023), a principal diferenca entre modelos estatisticos e
modelos de aprendizado de maquina, € a necessidade de interven¢do humana. Modelos estatisti-
cos demandam aten¢do na selecdo e planejamento de caracteristicas. Por outro lado, o aprendi-
zado de méquina pode ser aplicado com dados brutos, sem necessidade de pré-processamento.

Buscando superar as limita¢des das abordagens individuais, sistemas hibridos, combinam
diferentes tipos de aprendizado de méaquina para fazer predi¢des, que podem ser modelos fisicos
ou baseado em dados (Nguyen; Miisgens, 2022). O objetivo € equilibrar vantagens e mitigar
limitacdes de cada abordagem, embora isso possa acarretar custos computacionais elevados
(Voyant et al., 2017)(Gaboitaolelwe et al., 2023). Para Al-Dahidi et al. (2024), comparados
aos métodos tradicionais aplicados isoladamente, modelos hibridos oferecem resultados mais

precisos sem comprometer a confiabilidade das predicoes.

Modelos Hibridos
GllD - GElD
+  — (D
GlED - GElD
Figura 2.6: Representacdo da modelagem hibrida: as saidas de dois (ou mais) modelos distintos
sdo combinadas para geragdo do resultado.

Conforme ilustrado na Figura 2.6, é apresentada a arquitetura de um modelo hibrido, na

qual:

s O Modelo 1 de ML gera uma primeira predi¢ao;
= O Modelo 2, com abordagem distinta, produz uma segunda saida;

= Os resultados sdao armazenados e combinados, gerando uma saida.

Dentro do contexto de modelagem hibrida, o Regressor por Votacdo, constitui método
que combina multiplos modelos de regressdo independentes com objetivo de produzir uma
estimativa. A abordagem é baseada no principio de que diferentes modelos podem capturar
diferentes aspectos da estrutura dos dados, assim, ao integrar suas predicdes, obtem-se resultado
com menor variancia e maior capacidade de generalizagcdo. Cada regressor produz uma predicao
individual fm(x) e com isso o resultado é calculado pela média das predi¢Ges individuais,

€Xpresso como:
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M
DR WAS

m=1

onde:
= J(x) representa o valor estimado da varidvel resposta para a amostra de entrada x;
» M indica o nimero total de modelos de regressao;
= m € o indice que identifica cada modelo individual, comm =1,2,... ,M;
s fn(x) denota a predi¢ao produzida pelo modelo de regressdo para a entrada x;

. Al,l ¢ a normalizacdo da soma, resultando em uma média aritmética das predi¢des.

2.2.1.3 Arvore de Decisdo

A Arvore de Decisdo é um modelo de aprendizado supervisionado que mapeia hierarqui-
camente um dominio de dados em um conjunto de respostas. Nesse sentido, o modelo divide
os dados recursivamente em subdominios, garantindo que cada divisdo maximize o ganho de
informacdo em relagdo ao nd anterior. O objetivo do algoritmo de otimizagdo € encontrar a
melhor divisdo possivel. Além disso, na estrutura da arvore, cada nd interno representa uma
pergunta sobre uma caracteristica dos dados, cada ramo corresponde a uma possivel resposta e
cada n6 folha indica uma decisio final ou classe de saida (Suthaharan; Suthaharan, 2016).

A Figura 2.7 ilustra um exemplo de aplicacdo da Arvore de Decisdo. Inicialmente,
considera-se na raiz o conjunto de dados X = 3,5,6,8,9, 10, onde cada elemento possui um
rétulo de classe correspondente R = 1,1,0,1,1,0. O primeiro critério de divisao utiliza a média
dos valores de X (6,8), separando os dados em dois subconjuntos: CO = 3,5,6 (elementos
menores ou iguais a 6,8) e KO = 8,9, 10 (elementos maiores que 6,8). No entanto, como C0O
ainda contém rétulos mistos (classes 1 e 0), aplica-se uma nova divisao usando sua média (4,6),
resultando no no folha C1 = 3 (classe 1 pura) € no n6 interno C2 = 5,6. Em seguida, este
subconjunto ¢ dividido pela média 5,5, gerando os nés folha finais C3 = 5 (classe 1 pura) e
C4 = 6 (classe 0 pura). Desse modo, o processo recursivo de divisdo garante que todos 0s nds
terminais alcancem pureza maxima em sua classificagao.

No ramo direito da divisao inicial (valores maiores que 6,8) isola o subconjunto KO =
8,9, 10, onde rétulos correspondentes s@ao R =1, 1, 0. Visto que KO também apresenta classes
mistas, calcula a média de seus elementos (9) para estabelecer um novo critério de separagao.
A aplicacdo divide os dados em dois nés folhas definitivos: o K1 = 8, 9 (valores menores ou
iguais a 9), que resulta em uma classificacao pura da classe 1, e o0 K2 = 10 (valor maior que
9), que isola a classe 0. Atingindo também homogeneidade total também neste lado da arvore,

completando a estruturagdo do modelo.
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Media X = 6,8
C0=1{3,5, 6} KO = 18,9, 0}
R={1,1,0} :{13 ) }
! !
Meédia C0 = 4,6 Media KO =9
Cl = {3} = {5, 6} K1 = {8, 9} K2 = {10}
R = {1} =1{1 , 0} R ={1,1} R = {0}
Meédia C2 = 5,5
= {5} C4 = {6}
Rz 1) R = {0}

Figura 2.7: Exemplo de aplicagio do algoritmo Arvore de Decisdo

No contexto da regressio, os modelos de arvores de decisao sdo conhecidos pela simplici-
dade e eficiéncia para lidar com grande nimero de possibilidades, para isso usamos algoritmos de
divisdo e conquista, que faz uma divisdo de dados em conjuntos menores. Contudo, € importante
destacar a dificuldade desse modelo em lidar com decisdes em niveis mais baixos da drvore.

Formalmente, a estrutura l6gica do modelo pode ser expressa pela Equacao 2.2.

zl: I(x € D))
Onde:
= m(x) Representa o valor predito para a entrada x;
» k; Valor constante associado a folha, retorna a predi¢do do né;
» D; Representacao de n6 da arvore;
» /(x € D;) Retorna 1 se x estiver em D; e 0 se ndo estiver presente.

Nesse sentido, o algoritmo de Particio Recursiva (PR) constréi a arvore de decisdo
através de um processo recursivo de divisdo do conjunto de treinamento em subconjuntos cada

vez menores (Suthaharan; Suthaharan, 2016). O método opera sobre pares de dados (x,y), onde
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x representa as caracteristicas de entrada e y os valores alvo. Além disso, um aspecto importante
do algoritmo € o critério de parada, implementado através de um né de teste t. Para que uma
amostra x seja direcionada a um determinado ramo da arvore, ela deve satisfazer a condicao
6tima de divisdo s* associada ao nd. Esse teste de decisdo € necessdrio para o particionamento
hierdarquico dos dados. Portanto, em um conjunto de dados D podemos ter duas opcdes: uma
que satisfaz o critério (Equacdo 2.3) e outra que ndo satisfaz (Equacdo 2.4). Essas condicdes siao

usadas para melhor defini¢ao de divisdao para um determinado no.

D = {(x;,y;) : x; satisfaz s* }
D = {(x;,y;) : x; ndo satisfaz s*}

Para a construcao de um modelo de regressdo, é fundamental determinar os parametros
que minimizam o critério Minimos Quadrados (MQ). O método dos minimos quadrados é
um critério estatistico amplamente utilizado para ajustar modelos de regressdo. Sua principal
finalidade é minimizar a soma dos quadrados das diferengas entre os valores observados e
os valores previstos pelo modelo. A férmula dos quadrados minimos pode ser expressa pela

Equacao 2.5.

(i — r(B.x))?

S| =

MQ =
1

1

Onde:
s MQ: Representa os minimos quadrados;
» n: Quantidade de dados de amostra;
= y;: Rétulo de treinamento;
= x;: Amostra para treinamento;
» 7(B,x;): Representa a predicdo feita pelo modelo de regressao para a entrada x.

Com o objetivo de minimizar o valor esperado do erro quadratico, utiliza-se K; que é

dado pela Equagao 2.6:

1
Ki=—Yy
n; D;
Onde:

s K;: Constante;

= y;: Dado rotular;
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s 7;: Ndmero de exemplos em uma folha;
= D; Conjunto de exemplos que caem na folha /.

Para avaliar os testes que otimizam a precisiao da arvore, podemos quantificar o erro
associado a cada né t por meio da Equacao 2.7:

Err() =~ ¥ (v — k)?

ny D,

Onde:

s Err(t): Representa o erro do né analisado;

n;: Quantidade de dados da interagao;

yi: Dado rotular;

k;i: Erro quadrético minimizado dado pela Equacao 2.6.

D; representa o conjunto de dados presente no né ¢

A fim de realizar uma divisao bindria, ou seja, particionamento do espaco de caracte-
risticas em dois subconjuntos distintos, para isso, implementamos a regra de divisdo criteriosa.
Esta regra tem como objetivo principal minimizar o erro de predicdo da drvore resultante desse

particionamento. Formalmente, definimos o erro da divisao s através da Equacao 2.8:

Err(s,t) = gl -Err(t;) + Mt -Err(tg)
ny n
Onde:
» Err(s,t): Erro de divisdo;

» 7: O no atual antes da divisio;

» s5: Erro de uma divisao candidata;

t;: N6 a esquerda depois da divisdo que contém os dados que satisfazem a condicao;

t,: N6 a direita que contém os dados que ndo satisfazem a condic¢ao;

n;: nimero de exemplos em ¢;

ny,. Numero de exemplos de nds esquerdos;

ng,: Numero de exemplos de nds direitos;

Err(t;) o erro calculado do n6 esquerdo;
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» Err(t,) o erro calculado do no direito.

Dessa forma, pode-se determinar a melhor divisao para um né t dado um conjunto s de
possiveis divisdes. Esse critério orienta a escolha das divisdes nos nds internos da arvore de
regressdo. A cada iteracdo do algoritmo de particao recursiva, sdo testadas todas as divisdes

possiveis das varidveis, conforme Equacgao 2.9.

AErr(s,t) =Err(t) — Err(s,t)
Onde:
» AErr(s,t): Melhor divisdo;
» s: Erro de uma divis@o candidata;
» 7: O no atual antes da divisao;
s Err(t): Erro médio de um né expresso pela Equacéo 2.7;
» Err(s,t): Erro de divisdo expresso pela Equacéo 2.8.

Esse critério orienta a escolha das divisdes nos nds internos da arvore de regressdao. A
cada iteracao do algoritmo de parti¢do recursiva, sao testadas todas as divisdes possiveis das
varidveis. Além disso também devemos definir uma profundidade méaxima, que vamos testando

ao decorrer de testes do modelo.

2.2.1.4 Floresta Aleatoria

A Floresta Aleatéria ¢ um método de aprendizado de mdquina supervisionado que se
destaca tanto em tarefas de classificacao quanto de regressao (Al-Dahidi et al., 2024). Nesse
contexto, essa técnica utiliza um conjunto de arvores de decisdo para produzir predicdes mais
precisas e estaveis do que modelos baseados em uma tnica drvore (Gaboitaolelwe et al., 2023)
(Al-Dahidi et al., 2024).

O principio da Floresta Aleatdria consiste na combinacio de miltiplas drvores de regres-
sdo0, onde cada arvore € treinada em um subconjunto aleatério dos dados de treinamento. Além
disso, a cada divisdo de um n6 da arvore, apenas um subconjunto aleatorio de caracteristicas €
considerado, o que aumenta a diversidade entre as drvores e reduz a correlacdo entre elas. Como
resultado, a predi¢do final do modelo € obtida pela média das predicdes individuais de todas
as arvores, resultando em um modelo generalizado e menos suscetivel a overfitting (Al-Dahidi
et al., 2024).

O overfitting é considerado um desafio em aprendizado de maquina. Esse fendmeno
ocorre quando um modelo se ajusta excessivamente aos dados de treinamento, a ponto de perder

a habilidade de se aplicar a dados novos, resultando em um desempenho inferior nos testes (Ying,
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2019). Em vez de identificar padrdes uteis, 0 modelo acaba "decorando"os dados, incluindo
variacdes e elementos irrelevantes, que nio sao representativos do comportamento real dos dados.

Esse problema pode ser visto como uma falta de equilibrio entre a capacidade do modelo
de se ajustar bem aos dados observados e sua habilidade de fazer predi¢des eficazes com
dados inéditos (Ying, 2019). Quando o overfitting ocorre, o modelo pode ter um desempenho
excepcional nos dados de treinamento, mas ndo consegue generalizar corretamente para o
conjunto de teste, o que leva a uma queda de precisao em novas situacoes.

As Arvores de Deciso individuais tendem a se ajustar excessivamente aos dados de
treinamento, capturando ruidos e particularidades. Formalmente, a Equacao 2.10 representa o

funcionamento da Floresta Aleatéria.

n
RF ==Y AD 2.10
iz

Onde:

» RF: Representa a Floresta Aleatdria;
» n: Numero de elementos da iteragdo;

= AD: Representa a predicdo realizada pelo algoritmo.

2.2.1.5 Perceptron Multicamada

O Perceptron Multicamada € uma rede neural composta por varias camadas de neurdnios
interconectados. Esses neurdnios utilizam fun¢des de ativagdo ndo lineares, permitindo que a
rede reconheca e interprete padrdes complexos presentes nos dados. De modo geral, a rede
¢ estruturada em trés camadas: (i) entrada, onde sdo inseridas as varidveis independentes, (ii)
ocultas, responsdveis pelos cdlculos e transformagdes dos dados, e (iii) saida, que € responsdvel
por gerar as predicoes (Al-Dahidi et al., 2024).

Matematicamente, o funcionamento do Perceptron Multicamada € apresentado na Equa-
cdo 2.11.

n m
V= Ja Zwi ij'xi-l-h +by

i=1 j=1

Na Equacdo 2.11, f, representa a funcdo de ativagdo do neurdnio oculto, denominada
Leaky Rectified Linear Unit (Leaky ReLLU) (Al-Dahidi et al., 2024). Além disso, os parametros
m e n correspondem, respectivamente, ao nimero de neurdnios nas camadas ocultas e de saida.
Os pesos das conexdes sdo indicados por w; € w;, enquanto os vieses das camadas de entrada e
saida sdo representados por b e b;.

O processo de aprendizado da rede é realizado por meio do método de retropropagagao do
erro, que ajusta os pesos € vieses com base nas informagdes mais recentes, buscando minimizar

o erro na camada de saida. Com isso, a atualizacdo dos pesos € descrita pela Equagdo 2.12.
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w'=w—oa E 2.12

Onde:

s y é a predi¢do do modelo;

= w* é 0 novo peso atualizado;

= W representa o peso anterior;

» o ¢ a taxa de aprendizado;

. g—f; indica a variac¢do do erro em funcao do peso.
Por fim, a fun¢do de erro utilizada para avaliar o desempenho do modelo € expressa pela

Equacio 2.13.

e==Y i—yi)? 2.13

ngE

1
25

i

Na Equacdo Equacdo 2.13, os parametros sao definidos da seguinte forma:

» e: erro médio quadrético do modelo;

yi: valor previsto pela rede;

yi: valor real esperado para a amostra;
» 7: numero total de amostras;

($; — yi)?: erro ao quadrado entre o valor previsto e o valor real;

. %: fator utilizado para simplificar o célculo da derivada na etapa de otimizagdo.

2.2.2 Variancia e Tratamento de Anomalias

Variancia € uma medida que indica o quanto as predi¢cdes de um modelo mudam quando
ele € treinado em diferentes conjuntos de dados. Modelos com alta varidncia sdo muito sensiveis
a pequenas flutuacdes nos dados de treinamento, o que significa que podem capturar até mesmo
o ruido presente nesses dados (Voyant et al., 2017) (Al-Dahidi et al., 2024).

Essa sensibilidade excessiva é uma caracteristica de modelos complexos e esta direta-
mente relacionada ao overfitting. A alta variancia estd associada ao comportamento instdvel do
modelo diante de dados diferentes. (Ying, 2019).

Anomalias sdo padroes em dados que nao tem comportamento e estrutura normal (Liu;

Ting; Zhou, 2008). Podem ser induzidas nos dados por uma variedade de razdes, como quebra
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de sistema ou erros de medi¢do em sensores no geral, como meteorolégicos e medidores de saida
de energia (Chandola; Banerjee; Kumar, 2009).

Adicionalmente, em cendrios onde os dados envolvem multiplas varidveis dependentes do
tempo, as técnicas de deteccdo de outliers devem considerar correlacdes entre essas varidveis para
identificar anomalias temporalmente alinhadas (Blazquez-Garcia et al., 2021). Esses métodos
ndo apenas capturam desvios pontuais em uma unica dimensao, mas também padrdes atipicos

que afetam simultaneamente vdrias varidveis, indicando falhas ou eventos de maior impacto.

2.2.2.1 Floresta de Isolamento

A Floresta de Isolamento é um método de detec¢do de anomalias baseado em parti¢des.
Esse algoritmo aproveita duas propriedades fundamentais das anomalias: Sao instancias raras
(minoria) e possuem valores distintos das instancias normais (Liu; Ting; Zhou, 2008). O método
constréi um conjunto de arvores de isolamento para um conjunto de dados, identificando as
discrepancias com base no comprimento médio do caminho percorrido até o isolamento do
elemento. Nesse contexto, quanto menor o caminho, mais fécil € isolar a instancia, indicando
um valor aleatério (outlier).

Na Figura 2.8, observa-se o processo de parti¢do utilizado para isolar pontos especificos.
Por exemplo, o ponto (a) exigiu seis particdes para ser isolado, enquanto o ponto (b) necessitou
de apenas uma. Dessa forma, percebe-se que (b), por ser isolado rapidamente, ¢ uma anoma-
lia, enquanto (a), com maior dificuldade de isolamento, ndo apresenta caracteristicas de uma

anomalia.

®
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Figura 2.8: Processo de parti¢cdo dos dados para encontrar discrepancias.

O comprimento do caminho até o né folha de uma instancia é determinado pelo nimero
de divisdes necessdrias para isold-la. A partir desse valor, € possivel calcular a pontuacao de
anomalia. Para isso, inicialmente, primeiro definimos alguns valores: /(x) representa o nimero
de divisOes necessdrias até que a instancia alcance um no6 folha. Esse valor depende da quantidade
de dados disponiveis, representada por n. No entanto, como a profundidade da arvore cresce

com o nimero de elementos, essa caracteristica pode afetar a comparacdo entre instincias (Liu;
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Ting; Zhou, 2008). Assim, para contornar esse problema, utilizamos um valor normalizado com

base na amostra n, expressa pela Equagdo 2.14:

2(n—1)

c(n)=2H(n—1)—
Onde:
» H(n—1): representa o niimero harménico estimado por In(i) +0,5772156649;

s ¢(n) corresponde ao comprimento médio normalizado esperado de A (x) para uma

instancia ;
= n: representa a quantidade de dados.

Com base nesse valor normalizado, pode-se calcular a pontuacio de anomalia, conforme

apresentada pela Equacao 2.15:

Onde:

» s(x,n): Pontuagdo de anomalia para uma instincia x em um conjunto de dados com n

instancias;

» E(h(x)) corresponde a média de h(x) da instdncia x ao passar pelas drvores de

isolamento;

s ¢(n) corresponde ao comprimento médio normalizado esperado de A(x) para uma

instancia .

O valor de s(x) indica o grau de anomalia da instincia x, considerando a média do
comprimento do caminho E (h(x)) percorrido nas drvores de isolamento (Liu; Ting; Zhou, 2008).
Quando E(h(x)) é pequeno, s(x) se aproxima de 1, o que indica um forte indicio de anomalia.
(Liu; Ting; Zhou, 2008). Por outro lado, se E(h(x)) é aproximadamente igual a c¢(n), entdo
s(x) = 0.5, o que significa um comportamento comum (Liu; Ting; Zhou, 2008). Por fim, quando
E(h(x)) é grande, s(x) se aproxima de 0, indicando que a instancia é normal (Liu; Ting; Zhou,
2008).

2.2.3 Métricas de Desempenho

A qualidade ou precisao das predi¢des de saida fotovoltaica pode ser avaliada por meio da
diferenca entre os valores reais e os valores preditos. Essa diferenca é representada por métricas
de erro, que ajudam a quantificar o desempenho dos modelos de predi¢cdo, fornecendo uma

medida clara sobre o quio proximos ou distantes as predi¢des estdo dos resultados observados
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(Nguyen; Miisgens, 2022). Com isso, para a avaliacdo dos modelos de aprendizado € necessario
a aplicacdo de métricas fundamentais, como EAM, REQM e R2, uma vez que cada uma delas

oferece uma perspectiva tinica sobre a eficicia dos modelos (Al-Dahidi et al., 2024).

2.2.3.1 Erro Absoluto Médio (EAM)

EAM fornece medida direta da magnitude média dos erros, calculando a média das
diferencas absolutas entre os valores previstos e observados. Nesse contexto a métrica € essencial
para avaliar a precisao geral dos modelos, independentemente da direcao do erro (Abumoh-
sen et al., 2024)(Al-Dahidi et al., 2024). Sua representacdo matematica é apresentada pela
Equacdo 2.16:

M=

1 .
EAM = ) (Iyi=31) 2.16

i=1

Onde:
s EAM: Erro Absoluto Médio;
= n: Nimero de observagdes;
= y;: Valor real da observagao;

= y;: Valor predito ou estimado.

2.2.3.2 Raiz do Erro Quadratico Médio (REQM)

REQM corresponde a raiz quadrada da média das diferencas quadréticas entre os valores
preditos e os valores reais. Além disso ele representa o desvio padrao dos erros e € amplamente
utilizado para identificar desvios em predi¢des, sendo uma métrica util para comparar o desempe-
nho de modelos aplicados a diferentes conjuntos de dados (Abumohsen et al., 2024)(Al-Dahidi
et al., 2024). Para calcular o REQM, utiliza-se a férmula expressa pela Equacao 2.17:

Y (vi—9i)?
n

REQM =
Onde:
s REQM: Raiz do Erro Quadratico Médio
= 7: nimero de observacoes
= y; valor real da observacgdo

= y; valor predito ou estimado
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2.2.3.3 Coeficiente de Determinacao (R?)

R? avalia a propor¢ao da variancia da varidvel dependente que € explicada pelas varidveis
independentes utilizadas no modelo. Nesse sentido, essa métrica € particularmente importante
para compreender o quao bem o modelo se ajusta aos dados e sua capacidade de capturar as
relacOes existentes entre as varidveis (Abumohsen et al., 2024)(Al-Dahidi et al., 2024). Sua
expressao matematica € expressa pela Equacao 2.18:

R Li=ili -3

n

P i—y)?

Onde:
= n: nimero de observagdes;
= y;: valor real da observagdo;
= y;: valor predito ou estimado;

= y;: média dos valores reais.

2.3 Trabalhos Relacionados

Ledmaoui et al. (2023) realizaram estudo comparativo para medir a precisdo da predi¢ao
de energia solar com base em dados coletados de uma usina que se encontra em Benguerir, Mar-
rocos. Os autores utilizaram como varidveis a producdo de energia, a irradidncia e a temperatura
ambiente. No entanto, o uso reduzido de parametros pode ser insuficiente para um treinamento
robusto de modelos de aprendizado de maquina. Na avaliacao proposta, foram testados seis
algoritmos de aprendizado de maquina: Regressao por Vetores de Suporte (RVS), Redes Neurais
Artificiais (RNA), Arvore de Decisdo, Floresta Aleatéria, Modelo Aditivo Generalizado (MAG),
e Extreme Gradient Boosting (XGBOOST). O desempenho dos modelos foi aferido pelas mé-
tricas: Erro Quadratico Médio (EQM), EAM, Erro Absoluto Médio Escalonado (EAME) e R2.
Os autores concluiram que as Redes Neurais obtiveram melhor desempenho entre os modelos
testados, demonstrando alta eficiéncia e precisao na predi¢do de demandas energéticas. Contudo,
a remocao e tratamento de outliers nao sao devidamente apresentados e também inexiste o uso
de abordagens hibridas.

Em Al-Dahidi et al. (2024) é executado uma avaliacao entre modelos de aprendizado
de maquina e seu impacto na predi¢cao de energia fotovoltaica. Os algoritmos testados foram:
Modelo Linear Robusto (MLR), Arvore de Decisdo, Floresta Aleatéria, RVS e Perceptron
Multicamada. Os autores utilizam quatro varidveis climdticas de andlise: velocidade do vento,
umidade relativa, temperatura ambiente e irradiacio solar. Além disso, os autores implementaram
o algoritmo de otimizacdo de chimpanzés para selecdo de hiperparametros. Para fins de avaliagao
foram utilizadas as métricas EQM, EAM e R2. Diferente de Ledmaoui et al. (2023), Al-Dahidi
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et al. (2024) apresentaram andlise exploratdria completa, aplicando técnicas de normalizagdo e
utilizando de varidveis climaticas relevantes. Em relac@o aos resultados apontados evidenciou-
se que a radiacdo solar foi a varidvel mais influente na geracao de energia. Em termos de
desempenho, o Perceptron Multicamada se destacou com o melhor resultado. Entretanto, cabe
ressaltar algumas limitagdes: (1) ndo foram exploradas abordagens hibridas, (2) ndo ha uso de
técnicas de remoc¢ao de anomalias, e (3) os hiperparametros utilizados no modelo MLR ndo
foram disponibilizados.

No estudo de Abumohsen et al. (2024), o objetivo foi desenvolver modelos com alta
precisdo para predizer a geracdo de energia solar. Para isso, foram aplicadas algumas técnicas,
incluindo aprendizado de mdquina, aprendizado profundo e modelos hibridos. Entre os modelos
utilizados estdo: Bi-directional LSTM (BI-LSTM), Gated Recurrent Units (GRU), Redes Neurais
Recorrentes (RNR), Floresta Aleatéria, Maquina de Vetores de Suporte (MVS), BI-LSTM e Rede
Neural Convolucional (RNC). O modelo hibrido RNC-BI-LSTM-FA, apresentou os melhores
resultados em termos de precisdo. Os dados utilizados no treinamento foram coletados entre 03
de junho de 2022 e 31 de julho de 2023, fornecidos pela Tubas Electricity Company, localizada
na Palestina. As varidveis consideradas incluiram: poténcia de saida, radiac¢do solar, temperatura,
umidade, velocidade do vento e pressao atmosférica. Para avaliagdo dos modelos, foram adotadas
as métricas: EQM, EAM e R2 Na andlise comparativa, os modelos de aprendizado de maquina
demonstraram que a Floresta Aleatdria superou a MVS em termos de precisdo. Entre os modelos
de aprendizado profundo, como Long Short-Term Memory (LSTM), BI-LSTM, RNR e GRU, o
BI-LSTM se destacou com melhor desempenho. Em relacdo aos modelos hibridos, foi analisada
a combinacdo de LSTM-FA, bem como um segundo modelo composto por RNC-LSTM-FA. Ao
comparar modelos individuais e hibridos, € evidente que o modelo RNC-LSTM-FA apresentou
melhores resultados, confirmando a hipétese de que abordagens hibridas sdo mais eficazes do
que modelos isolados (Voyant et al., 2017). Apesar dos resultados obtidos, alguns pontos devem
ser destacados: (1) ndo foram disponibilizados os hiperparametros utilizados, o que limita a
replicabilidade dos experimentos, e (2) ndo hd qualquer mencao a aplicacdo de técnicas de
controle e remocao de anomalias.

No estudo de Amiri et al. (2024), foram implementados diversos modelos de aprendizado
de maquina, incluindo FA, RVS, PM, Regressao Linear (RL), Aprimoramento por Gradiente
(AG), K-Vizinhos Mais Préximos (KNN), Regressao Ridge (RR), Lasso Regressor (LASSO),
Regressao Polinomial (RP) e Extreme Gradient Boosting (XGBoost). Observa-se, que nao foi
explorada nenhuma modelagem hibrida, e os hiperparametros utilizados nao foram detalhados
pelos autores. Embora a aplicagdo isolada da Floresta Aleatdria tenha apresentado desempenho
consistente, quando adotamos abordagens hibridas — em nossas proprias experimentacgdes,
verificou-se uma tendéncia de reducao tanto no EAM quanto no REQM. Considerando as
diferencas entre as bases de dados utilizadas, o modelo desenvolvido neste trabalho obteve
valores de EAM e REQM superiores aos registrados para o modelo isolado de Amiri et al.

(2024). Nesse sentido, a adoc¢ao de uma abordagem hibrida, caso fosse implementada por Amiri
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et al. (2024), provavelmente resultaria em melhorias no desempenho. Como aspecto positivo

do trabalho de Amiri et al., destaca-se a implementacdo de solucao para deteccao e tratamento

de anomalias. A Floresta Aleatdria se destacou como 0 modelo com melhor desempenho geral

entre os avaliados.

Tabela 2.1: Resultados de Amiri et al. (2024)

Métrica | RP FA | RVS | MLP | AG LR | KNN | RR | LASSO | XGBoost
RMSE | 26.57 | 21.02 | 27.12 | 25.46 | 23.15 | 27.96 | 25.25 | 27.96 | 28.01 24.06
MAE 9.79 | 740 | 7.63 | 9.24 | 794 | 10.50 | 7.79 | 10.50 | 10.49 7.63
R? 093 | 096 | 093 | 094 | 095 | 092 | 0.94 | 0.92 0.92 0.94

Por fim, observa-se que nenhum dos trabalhos utilizou ou disponibilizou o conjunto

de dados em suas avaliagdes, 0 que representa uma limitacdo significativa, uma vez que o

compartilhamento dessa informagdo contribui com a possibilidade de novas interpretacdes

interdisciplinares, a preservagdo da integridade dos dados a longo prazo, otimizagao de recursos

e a transparéncia cientifica (Tenopir et al., 2011).
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Metodologia

Este capitulo descreve a metodologia adotada para o desenvolvimento e avaliacao dos
modelos preditivos de geracao de energia solar fotovoltaica. Sao detalhados os materiais utiliza-
dos, incluindo a base de dados ptblica e as ferramentas computacionais, bem como os métodos
empregados nas etapas de processamento de dados, tratamento de anomalias, configuracdo dos

modelos e avaliacdo de desempenho.

3.1 Descricao

Conforme ilustra a Figura 3.1, foram desenvolvidos sete modelos para analisar o de-
sempenho das técnicas de aprendizado de maquina empregadas. Nos Modelos 1, 2 e 3, cada
técnica, Arvore de Decisdo (AD), Floresta Aleatéria (FA) e Perceptron Multicamada (PM), foi
aplicada de forma independente, possibilitando avaliar o potencial preditivo individual de cada
abordagem. J4 os Modelos 4, 5 e 6 investigaram combinag¢des hibridas, correspondentes as
configuracdes AD e FA, AD e PM, e FA e PM, com o objetivo de verificar efeitos sinérgicos
entre as técnicas. Por fim, o Modelo 7 reuniu simultaneamente as trés abordagens (AD, FA e

PM), configurando o cendrio mais abrangente e integrador da metodologia proposta.

3.2 Processamento de Dados e Tratamento de Anomalias

Para o treinamento e validagdo dos modelos foi utilizada uma base de dados publica
disponivel no site Al on Demand'. Os registros foram coletados em intervalos horarios, abran-
gendo trés localidades distintas, no periodo de 22 de novembro de 2022 a 2 de novembro de
2023. A base de dados contém, varidveis relacionadas as condi¢des meteoroldgicas e aos niveis

de energia elétrica gerada, conforme descrito a seguir:

» Temperatura do ar em graus Celsius (°C);

» Quantidade de cobertura de nuvens no céu, expressa em percentual (%);

' AT on Demand


https://www.ai4europe.eu/research/ai-catalog/solar-energy-production-dataset?utm_source=chatgpt.com
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Modelo 1 Modelo 2 Modelo 3
Arvore de Floresta
Decisdo Aleatoria
Modelo 4 Modelo 5 Modelo 6
Arvore de + Floresta Arvore de " Floresta +
Decisio Aleatoria Decisio Aleatéria

Modelo 7

Arvore de Floresta
DR | N
Decisao Aleatoria

Figura 3.1: Esquema dos modelos de aprendizado de maquina.

» Irradiincia Difusa Horizontal: Radiagdo solar recebida em superficie horizontal
proveniente de todo o céu, incluindo luz direta e difusa. Medida em quilowatts por

metro quadrado (kW/m?);

» Irradiincia Direta Normal: Representa a radiacdo solar recebida diretamente do
sol em superficie perpendicular aos raios solares. Medida em quilowatts por metro
quadrado (kW/m?);

» Irradiancia Extraterrestre Horizontal: Quantidade de radiacd@o solar que seria recebida
na superficie da Terra se ndo houvesse atmosfera. Medida em quilowatts por metro
quadrado (kW/m?);

» Irradidncia Global Horizontal: Radiagdo solar total recebida em uma superficie
horizontal, incluindo componentes diretos e difusos. E medida em quilowatts por

metro quadrado (kW/m?);

s Produgdo — Local 1/Local 2/Local 3: Representa a producao de eletricidade dos

painéis solares no Local 1, Local 2 e Local 3, em quilowatt-horas (kWh);

O processamento de dados € etapa fundamental para garantir a qualidade do conjunto
de treinamento. Como discutido no Capitulo 2, essas informagdes devem estar em condigdes
ideais para evitar perdas na precisdo dos resultados de predi¢do. Técnicas de pré-processamento,
como a remoc¢ao de valores ausentes por meio da funcdo Dropna da biblioteca Pandas, foram
aplicadas a base de dados. Posteriormente, os dados foram filtrados de modo a incluir apenas os
registros correspondentes ao periodo de incidéncia significativa de radiacao solar, entre 06:00 e
18:00. Em seguida, utilizando a fun¢do Train Test Split da biblioteca Scikit-learn, o conjunto

de dados foi dividido em 75% para treinamento e 25% para teste. Além disso, todas varidveis
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foram avaliadas tanto individualmente quanto em conjunto, a fim de verificar o desempenho do
modelo em diferentes combinagdes. Para auxiliar compreensdo de relacdes entre varidveis e
embasar a escolha das caracteristicas para os modelos, foi realizada andlise que incluiu a geragao
de um mapa de calor de correlacdo entre todas varidveis numéricas do conjunto de dados a fim
de auxiliar nos testes das combinacdes.

Para o tratamento de anomalias, utilizou-se a técnica de Floresta de Isolamento. Inicial-
mente, foi aplicado o algoritmo Arvore de Decisdo aos dados brutos. Em seguida, o procedimento
foi repetido, aplicando-se a Arvore de Decisdo aos dados previamente tratados com Floresta de
Isolamento, a fim de verificar o efeito positivo do tratamento. Por fim, o desempenho entre os
dois cendrios foi comparado, através das métricas de desempenho EAM, REQM e R2.

Para a Floresta de Isolamento, a taxa de contaminacao foi testada individualmente em
cada modelo, com objetivo de identificar o valor ideal para a deteccdo de outliers. Este parametro
determina a porcentagem de observacdes do conjunto de dados que serdo consideradas potenciais
anomalias. No Modelo 1, foi utilizada a taxa de contaminacdo de 0,10. No Modelo 2, a taxa foi
de 0,04. Para o Modelo 3, foi aplicada a taxa de 0,05. No Modelo 4, novamente foi utilizada a
taxa de 0,10. J4 nos Modelos 5, 6 e 7, a configuracdo adotada foi de 0,075. Em todos os modelos,
foram utilizadas 100 arvores, considerando todos os atributos em cada divisdo e até 256 amostras

por arvore.

3.3 Ajuste de Hiperparametros

Nos experimentos realizados, foram adotados os hiperparametros apresentados na Ta-
bela 3.1.Esses hiperparametros foram definidos com objetivo de otimizar a performance de cada
modelo na tarefa de predicao.

Para a Arvore de Decisdo, o critério de divisdo utilizado foi o Erro Quadriatico, o que
significa que a escolha das melhores divisdes nos nds da arvore foi feita minimizando a soma
dos quadrados dos erros nos valores preditos. A profundidade maxima da arvore foi limitada a 6
niveis, evitando que o modelo se tornasse excessivamente complexo e se ajustasse aos dados de
treinamento. Nao foram impostas restricdes para o niimero méaximo de atributos ou folhas. O
tamanho minimo de amostras necessarias para formar uma folha foi definido como 1, enquanto
o minimo de amostras exigidas para realizar uma divisao foi 2.

No caso da Floresta Aleatdria, foi adotada estratégia de amostragem com reposicao, ou
seja, cada arvore da floresta foi treinada em uma amostra aleatéria dos dados com repetigdes.
O critério de divisao utilizado dentro das arvores foi o Erro Absoluto, que orienta a formacao
dos n6és minimizando a soma das distancias absolutas entre as previsdes e os valores reais. A
profundidade maxima das arvores foi limitada a 7 e o nimero maximo de atributos considerados
por divisdo foi definido como 1.0, indicando que todas as varidveis disponiveis puderam ser
consideradas. Assim como na Arvore de Decisdo, ndo houve limita¢do no ndmero de folhas de

amostras. O nimero minimo de amostras por folha foi 1, com 2 como minimo para permitir uma
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Tabela 3.1: Ajuste de hiperparimetros dos modelos, detalhando valores definidos para cada

algoritmo.
Modelo Hiperparametro Valor
Critério de Divisdo Erro Quadratico
Profundidade Maxima 6
Numero Maximo de Atributos Nenhum
Arvore de Decisdo | Nimero Méaximo de Folhas Nenhum
Numero Minimo de Amostras por Folha 1
Numero Minimo de Amostras para Divisdo 2
Método de Divisao Melhor
Amostragem com Reposicao Verdadeiro
Critério de Divisao Erro Absoluto
Profundidade Maxima 7
Numero Méximo de Atributos 1.0
Floresta Aleatéria | Numero Maximo de Folhas Nenhum
Nimero Maximo de Amostras Nenhum
Numero Minimo de Amostras por Folha 1
Nimero Minimo de Amostras para Divisao 2
Numero de Estimadores 100
Func¢do de Ativacao ReLU
Regularizacio alpha 0,0001
Tamanho de Lote Auto
Tamanhos das Camadas Ocultas (100, 50)
Taxa de Aprendizado Constante
Taxa Inicial de Aprendizagem 0,001
Rede Neural Miéximo de Func¢des Internas 15000
Numero Maximo de Iteracdes 2000
Numero de Iteracoes sem Mudanca 10
Solver Adam
Tolerancia 0,0001
Fracao de Validagao 0,1

divisdo. A floresta consistiu 100 estimadores, ou seja, 100 arvores de decisdao independentes.
Para a Rede Neural, adotou-se a fungdo de ativagdo ReLLU, amplamente utilizada por
permitir convergéncia eficiente em redes profundas. A regularizacdo foi controlada pela varidvel
alpha com valor 0,0001, ajudando a evitar o overfitting. O tamanho do lote de treinamento foi
definido automaticamente, enquanto a arquitetura da rede incluiu duas camadas ocultas com
100 e 50 neurdnios, respectivamente. A taxa de aprendizado foi mantida constante, com um
valor inicial de 0,001, e o solver escolhido para otimizagao foi o Adam, método eficiente para
grandes espacgos de parametros. O algoritmo foi configurado para realizar até 2000 iteragdes,
com maximo de 15000 fungdes internas. O critério de tolerancia para parada foi 0,0001, e o

treinamento pararia se ndo houvesse melhoria ap6s 10 iteracdes consecutivas.



3.4. FERRAMENTAS UTILIZADAS 42

3.4 Ferramentas Utilizadas

Para o desenvolvimento e a implementacao dos experimentos, sao utilizadas as principais

tecnologias descritas a seguir:

= Ambiente de desenvolvimento: o ambiente de programacao utilizado foi o Google
Colab?, plataforma colaborativa que oferece recursos para desenvolvimento de c6digo
Python, além de integracdo com diversos servicos de armazenamento e execugdo em

nuvem.

= Manipulacio e analise de dados: para tratamento e manipulacdo dos dados, foram
utilizadas as bibliotecas Pandas® (versdo 2.2.2) e NumPy4 (versdo 2.0.2), amplamente

utilizadas para andlise de dados estruturados e computa¢do numérica.

» Visualizaclo: para criacdo de graficos e visualizagdes dos dados, foram empregadas
as bibliotecas Matplotlib5 (versdo 3.10.0) e Seaborn® (versio 0.13.2), que permitem

a construcao de visualizacdes customizadas.

= Aprendizado de maquina e pré-processamento: o pré-processamento de dados e a
aplicagdo dos algoritmos de aprendizado de maquina foram realizados utilizando a
biblioteca Scikit-learn’ (versdo 1.6.1), que oferece gama de ferramentas para tarefas

de modelagem preditiva e avaliacdo de desempenho.

= Versionamento de cédigo: para controle de versido do cédigo-fonte e colaboragdo
no desenvolvimento, foi utilizado o Gir®, sistema distribuido para gerenciamento de

versoes.

= Armazenamento e disponibilizacdo: o c6digo final e os recursos utilizados foram

armazenados e disponibilizados através da plataforma Github®.

Zhttps://colab.google/

3https://pandas.pydata.org

“https://numpy.org

>https://matplotlib.org

®https://seaborn.pydata.org
"https://scikit-learn.org/stable/

8https://git-scm.com
“https://github.com/Ruanrochafeitosa/paper-RIM-2026



43

Resultados e Discussao

Este capitulo apresenta os resultado da aplicagdo e avaliacdo dos diferentes modelos de

aprendizado de maquina definidos no Capitulo 3.

4.1 Correlaciao de Variaveis

O mapa de correlacdo entre varidveis numéricas exibido na Figura 4.1 evidencia relagdes
de intensidade distintas. Em particular, observa-se que varidveis associadas a radiacdo solar,
como Irradiancia Direta Normal, Irradidncia Horizontal Extraterrestre e Irradiancia Global
Horizontal, apresentam correlacdes muito altas (valores proximos a 0,9 ou superiores). Este
padrdo sugere que essas varidveis capturam conceitos fisicos sobre radiacio solar que coexistem
€ variam em conjunto no mesmo ambiente.

No que se refere a relac@o entre varidveis climéticas e producdo, ha correlagdes positivas
moderadas a altas entre as varidveis de radiancia (DNI, EBH, GHI) e as varidveis de producao.
Este fato indica que condi¢des de maior radiagdo solar tendem a associar-se a niveis maiores
de producio, o que é coerente com a hipétese fisica de que a geracdo depende da intensidade
da radiacao disponivel. Em contrapartida, a varidvel CloudOpacity, relacionada a opacidade de
nuvens, apresenta correlagdes negativas com a produgdo, o que sugere que maior cobertura ou
densidade de nuvens pode atenuar a produgdo elétrica, ainda que esse efeito nao seja tdo intenso

quanto as influéncias diretas da radiagao.

4.2 Tratamento de Anomalias

Conforme ilustra a Figura 4.2, os resultados da Arvore de Decisdo indicam que o EAM
apresentou uma queda expressiva em todos os trés locais analisados ap6s a aplicacdo da Floresta
de Isolamento, com reducdes de 15,30%, 7,41% e 8,83%, respectivamente. De modo semelhante,
o REQM apresentou diminui¢des de 19,67% no Local 1, 5,72% no Local 2 € 9,07% no Local 3
apods o tratamento das anomalias.

Ainda com base nos resultados exibidos na Figura 4.2, observou-se também avango no

R? de 6,76% no Local 1. Por outro lado, no Local 2 houve uma redugdo de 2,25%, enquanto
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Figura 4.1: Correlagéo das varidveis numéricas da base de dados.
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Figura 4.2: Comparagdo do desempenho da Arvore de Decisdo com e sem remogdo de anomalias.

no Local 3 nao foram registradas mudancgas. Esses resultados sugerem que os dados do Local

1 continham quantidade considerdvel de anomalias que comprometiam o ajuste do modelo
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preditivo, enquanto, nos demais locais, a remocao de anomalias pode ter eliminado informagdes
relevantes para as previsoes.

No segundo experimento, foi aplicada a Floresta Aleatéria com e sem remocao de
anomalias. O comportamento observado foi similar ao teste anterior. O EAM diminuiu 12,9%
no Local 1, 2,5% no Local 2 e 7,9% no Local 3, como evidencia a Figura 4.3. De forma
complementar, 0 REQM foi reduzido em 15,3% no Local 1, 4,2% no Local 2 e 5,0% no Local 3.
Quanto ao R2?, houve discreto decréscimo de 1,1% no Local 3, nenhuma variagdo no Local 2 e
uma melhora de 3,8% no Local 1.

I EMA (com) s REQM (com) -=- R2(com)
EMA (sem) REQM (sem) —o— R2 (sem)
60 1
54.1
= 501 45.9 r1.00
E 0.92 _ 0.90
L . e W.SQ
2 32.0082 -~ o
2 304 27.8
> 22.423.6 0,75
S 20+
w 13.414.0 15 713.8
x ]l B
l

Local 1 Local 2 Local 3
Local de producdo

Figura 4.3: Comparacao do desempenho da Floresta Aleatéria com e sem remocdo de anomalias.

No terceiro experimento, foi aplicado o Perceptron Multicamada (MLP) com e sem
remoc¢do de anomalias. Conforme mostra a Figura 4.4, o EAM apresentou reducdo em todos os
locais: no Local 1, houve queda de 9,0%; no Local 3, de 4,3%; no Local 2 ocorreu um aumento
de 2,1%. O REQM apresentou comportamento similar: no Local 1, reduziu-se 10,3%; no Local
3, 9,1%; enquanto no Local 2 observou-se diminui¢do de 3,4%.

Em relagdo ao R2, conforme exposto na Figura 4.4, constatou-se aumento de 1,3% no
Local 1, piora de 2,2% no Local 2 e nenhuma variagdao (0%) no Local 3. Esses resultados
sugerem que, para o Perceptron Multicamada, em alguns casos a remog¢do de anomalias pode
eliminar dados relevantes ao ajuste do modelo, especialmente no Local 2, prejudicando tanto o
EAM e o REQM quanto o valor de R2.

4.3 Modelos Individuais

A Tabela 4.1 sintetiza os resultados obtidos nos testes individuais por local de producio.
O Local 2 apresenta desempenho superior, evidenciado pelos menores valores de EAM e REQM,

bem como pelo valor mais elevado R?, em comparagdo aos demais locais. No ambito dos
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Figura 4.4: Comparagdo do desempenho do Perceptron Multicamada com e sem remocéo de

anomalias.

modelos isolados, a técnica FA demonstrou maior eficdcia, superando AD e PM. E possivel que,
dado o cardter publico da base de dados utilizada, a mesma contenha anomalias que AD nao

conseguiu detectar ou eliminar de forma adequada.

Tabela 4.1: Desempenho dos Modelos 1, 2 e 3 segundo EMA, REQM e R2, por local de produgio.

EMA (kWh) REQM (kWh) R2
Local1 Local2 Local3 | Locall Local2 Local3 | Locall Local2 Local3
Modelo 1 | 38.58 12.64 18.60 59.62 18.95 27.93 0.74 0.86 0.86
Modelo 2 | 31.96 8.43 13.77 54.15 13.97 23.60 0.79 0.92 0.90
Modelo 3 | 33.93 9.11 14.36 53.57 14.12 23.55 0.79 0.92 0.90

Modelo

Especificamente, o Modelo 1 (Arvore de Decisio) apresentou EAM de 38,58 kWh (Local
1), 12,64 kWh (Local 2) e 18,60 kWh (Local 3); REQM de 59,62 kWh, 18,95 kWh e 27,93 kWh,
respectivamente; e R? de 0,74, 0,86 e 0,86, nessa mesma ordem.

No Modelo 2 (Floresta Aleatdria), observou-se reducao do EAM para 31,96 kWh (queda
de 17,1 % em relagao ao Modelo 1) no Local 1, 8,43 kWh (-33,3%) no Local 2 e 13,77 kWh
(=25,9%) no Local 3; o REQM diminuiu para 54,15 kWh (-9,2%), 13,97 kWh (-26,3%) e 23,60
kWh (-15,6%); enquanto o R2 permaneceu em 0,79 no Local 1, mas subiu para 0,92 no Local 2
e 0,90 no Local 3, indicando maior consisténcia do modelo em ambos os locais.

Ja o Modelo 3 (PM) registrou EAM de 33,93 kWh (-10,0%) no Local 1, 9,11 kWh
(=27,9%) no Local 2 e 14,36 kWh (-22,8%) no Local 3; REQM de 53,57 kWh (-10,2%), 14,12
kWh (-25,5%) e 23,55 kWh (—15,8%); e R2 de 0,79 (Local 1), 0,92 (Local 2) e 0,90 (Local 3),
confirmando desempenho similar ao do Modelo 2.

A Figura 4.5, Figura 4.6 e Figura 4.7 ilustram comparativamente os valores reais e
preditos por meio de graficos de linha, com a linha sélida azul representando os valores reais

e a linha amarela tracejada os valores estimados. A andlise dos resultados, considerando o


https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model1.ipynb
https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model2.ipynb
https://github.com/Ruanrochafeitosa/paper-RJM-2026/blob/main/src/Model3.ipynb
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Modelo 1, Modelo 2 e Modelo 3 respectivamente, permite avaliar a proximidade entre as curvas

e, consequentemente, a capacidade preditiva de cada modelo ao replicar o comportamento dos
dados originais.
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Figura 4.5: Comparativo entre valores observados e estimados pelo modelo Arvores de Decisdo
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Figura 4.6: Comparativo entre valores reais e estimados pelo modelo Floresta Aleatéria (FA)
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Figura 4.7: Comparativo entre valores reais e estimados pelo modelo Perceptron Multicamada
(PM)

4.4 Modelos Hibridos Duplos

A Tabela 4.2 apresenta o desempenho aferido dos Modelos 4, 5 e 6 segundo EMA,

REQM e R?, por local de producdo. Dentre os hibridos avaliados, o Modelo 6 apresentou o
melhor desempenho em todos os locais de producao.
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Tabela 4.2: Desempenho dos Modelos 4 a 6 segundo EMA, REQM e R?2, por local de produgdo.

Modelo EMA (kWh) REQM (kWh) R2

Locall Local2 Local3 | Locall Local2 Local3 | Locall Local2 Local3
Modelo4 | 29.25 7.93 13.61 46.75 13.61 21.93 0.80 0.90 0.89
Modelo 5 | 30.71 8.04 13.10 46.81 13.00 19.69 0.81 0.91 0.92
Modelo 6 | 28.85 7.26 11.46 46.01 12.15 18.40 0.81 0.92 0.93

Para o EAM, o Modelo 4 obteve valores de 29,25 kWh (Local 1), 7,93 kWh (Local 2)
e 13,61 kWh (Local 3). O Modelo 5 apresentou um aumento de aproximadamente 4,9% no
Local 1, 1,4% no Local 2, e reducao de cerca de 3,8% no Local 3. A Figura 4.8 e a Figura 4.9

exibem o comportamento dos valores observados e estimados com a aplica¢do dos Modelos 4 e
5, respectivamente.
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Figura 4.8: Comparativo entre os valores observados e os estimados pelo modelo hibrido -
Arvores de Decisio + Floresta Aleatéria.
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Figura 4.9: Comparativo entre os valores observados e os estimados pelo modelo hibrido -
Arvores de Decisdo + Perceptron Multicamada.

O Modelo 6 reduziu o EMA em relagdo ao Modelo 5: cerca de 6,1% no Local 1, 9,7%
no Local 2 e 12,5% no Local 3. Em relagdao ao REQM, o Modelo 5 provocou pequenas variagdes
em comparagdo ao Modelo 4 (aproximadamente +0,1% no Local 1; reducdo de cerca de 4,5%
no Local 2; reducao de aproximadamente 6,2% no Local 3). O Modelo 6 apresentou melhorias

adicionais com redu¢des de REQM de cerca de 1,7% (Local 1), 6,5% (Local 2) e 6,6% (Local
3).
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No que se refere ao coeficiente de determinacgdo (R2?), houve evolugdo consistente dos
modelos 4 para 5 e, em seguida, para o modelo 6: comparado ao Modelo 4, o Modelo 5 melhorou
em cerca de 1,3% (Local 1), 1,1% (Local 2) e 3,4% (Local 3); o Modelo 6 manteve ou ultrapassou
esses valores, com ganhos de 0,6%, 1,1% e 1,1%, respectivamente. Esses resultados confirmam
que o Modelo 6 € superior aos outros modelos hibridos avaliados nos trés locais de produgao.
A Figura 4.10 exibe o comparativo entre valores observados e estimados pelo modelo hibrido

duplo composto pelos algoritmos Floresta Aleatdria e Perceptron Multicamada.
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Figura 4.10: Comparativo entre os valores observados e os estimados pelo modelo hibrido -
Floresta Aleatéria (FA) + Perceptron Multicamada (PM)

4.5 Modelo Hibrido Triplo

Ap6s avaliacio dos modelos hibridos duplos, analisa-se o Modelo 7, que combina Arvore
de Decisdo, Floresta Aleatdria e Perceptron Multicamada. No que se refere ao EAM, o Modelo
7 alcangou 28,94 kWh no Local 1 com aumento de 0,31% em relagdao ao Modelo 6, 7,36 kWh no
Local 2 onde teve um aumento de 1,37% e 11,89 kWh no Local 3 com aumento de 3,75%. Ja o
REQM foi de 47,50 kWh no Local 1 com elevacao de 3,23%, 12,49 kWh no Local 2 aumento de
2,79% e 19,24 kWh no Local 3 crescimento de 4,56%. Por fim, o R? registrou 0,80 no Local
1 com uma reducao de 1,23% e 0,92 no Local 2 que se manteve estavel, enquanto no Local 3
houve uma pequena reducao de 1,07%, atingindo 0,92. A Tabela 4.3 exibe o desempenho do
Modelo 7 segundo EMA, REQM e R?2, por local de produgdo, enquanto a Figura 4.11 exibe o
comparativo entre valores observados e estimados pelo modelo hibrido triplo composto pelos
algoritmos Arvore de Decisdo, Floresta Aleatdria e Perceptron Multicamada.

Como pode ser observado na Tabela 4.3, o EAM foi de 28,59 kWh no Local 1, re-
presentando reducdo de 0,9% em relacdo ao Modelo 6, 7,24 kWh no Local 2, com queda de
0,3%, e 11,69 kWh no Local 3, com aumento de 2%. O REQM atingiu 47,16 kWh no Local

Tabela 4.3: Desempenho do Modelo 7 segundo EMA, REQM e R?, por local de produgao.

EMA (kWh) REQM (kWh) R2
Locall Local2 Local3 | Locall Local2 Local3 | Locall Local2 Local3
Modelo 7 | 28.94 7.36 11.89 47.50 12.49 19.24 0.80 0.92 0.92

Modelo
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1, apresentando aumento de 2,5% em comparacio ao Modelo 6, 12,36 kWh no Local 2, com
incremento de 1,7%, e 18,94 kWh no Local 3, registrando aumento de 3,0%. Em relacdo ao R?,
observou-se 0,81 no Local 1, mantendo o mesmo valor do Modelo 6, 0,92 no Local 2, também
estavel, e 0,92 no Local 3, com leve reducdo de 1,1%. Esses resultados indicam que o Modelo 7

apresenta desempenho inferior em relagdo ao Modelo 6.
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Figura 4.11: Comparativo entre os valores observados e os estimados pelo modelo hibrido -
Arvores de Decisdo + Floresta Aleatdria + Perceptron Multicamada.

Os resultados indicam que o Modelo 7 apresentou desempenho inferior ao Modelo 6,
com pequenas melhorias pontuais no EAM, mas aumento no REQM e perda de ajuste no R2.
Adicionalmente, nota-se diferenca significativa entre os locais de produgdo. O Local 2 se mostrou
como o de melhor desempenho em todos os modelos avaliados, alcangando maiores valores
de R? e os menores erros, tanto no EAM quanto no REQM. Esse desempenho superior pode
ser justificado devido as variacdes nas medicoes dos sensores decorrentes das caracteristicas da
localizagao.

Na comparagdo entre os modelos, observa-se que, quanto ao EAM, o Modelo 7 obteve
os menores valores nos Locais 1 e 2, enquanto no Local 3 o melhor resultado foi obtido pelo
Modelo 6. J4 em relacdo ao REQM, o Modelo 6 apresentou os menores erros em todos os locais,
consolidando-se como o mais consistente nesse critério. Considerando o R2, o Modelo 6 também
demonstrou desempenho superior frente aos demais.

A andlise individual dos algoritmos indica que a Floresta Aleatdria apresentou menor
erro absoluto, mantendo valores de R? semelhantes aos outros modelos, o que a torna o algoritmo
com melhor desempenho dentre as técnicas analisadas. Além disso, observa-se correlacao
entre o desempenho dos modelos individuais e seus equivalentes hibridos: algoritmos mais
preditivos, quando combinados, tendem a gerar resultados superiores. Entretanto, nota-se que os
modelos que incorporaram a Arvore de Decisdo como preditor, em especial os Modelos 4, 5 ¢ 7,
apresentaram desempenho ligeiramente inferior, ainda que a diferenca em relagdo aos demais

modelos seja pequena.
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Conclusao

Este trabalho investigou a aplicacdo de diferentes estratégias de aprendizado de miquina
na predicao de energia solar fotovoltaica, considerando modelos individuais, através dos al-
goritmos de Arvore de Decisdo, Floresta Aleatéria e Perceptron Multicamada, e abordagens
hibridas resultantes das combinagdes em duplas e tripla. Os experimentos de andlise preditiva
dos modelos foram realizados com dados reais de trés locais distintos de produgao, avaliados por
meio das métricas de EAM, REQM e R2.

A remocdo de anomalias possui potencial significativo de aprimorar o desempenho
preditivo de modelos, reduzindo erros medidos por EAM e REQM. Todavia, esse ganho ndo €
uniforme e depende do modelo e conjunto de dados. Enquanto modelos baseados em arvore
responderam, de forma favordvel a eliminacio de observacdes atipicas, apresentando reducdes
expressivas nos erros e, em alguns casos, elevacio do R?, o algoritmo Perceptron Multicamada
demonstrou maior sensibilidade a supressao de dados extremos, chegando a apresentar piora do
R? ou aumento do erro em determinados locais. Esse comportamento evidencia que, embora
a remocao de anomalias seja estratégia relevante, sua aplicagdo deve ser feita com cautela
e avaliada localmente, especialmente em modelos mais complexos, para evitar exclusao de
informacao relevante ao ajuste e a generalizacdo preditiva.

Observou-se que os modelos hibridos superaram os individuais, destacando-se o com-
posto pela combinagdo entre Floresta Aleatdria e Perceptron Multicamada, tornando-se a solucao
mais consistente e equilibrada para predic@o de energia solar fotovoltaica no contexto analisado.
Esse modelo apresentou reducdes significativas nos erros das predigdes e valores de R? superiores
a 0,90 em todos os locais de produ¢do. Embora o Modelo, que combinou simultaneamente as
trés técnicas, tenha mostrado bom desempenho em alguns cendrios, ele ndo conseguiu superar o
FA + PM de forma consistente, sobretudo em termos de REQM e estabilidade dos erros.

A andlise individual refor¢ou a importancia da estratégia de Floresta Aleatdria, que se
destacou pelo menor erro absoluto e pela manutencao de altos valores de R?, confirmando-se
como o algoritmo mais preditivo. Consequentemente, verificou-se que modelos mais precisos
individualmente tendem potencializar positivamente os resultados quando integrados em arquite-

turas hibridas, embora a inclusao da Arvore de Decisdao em algumas combinagdes tenha reduzido
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ligeiramente o desempenho.
Os resultados experimentais comprovam a relevancia do uso de abordagens hibridas de

aprendizado de maquina para a predi¢do da geracao solar fotovoltaica, promovendo confiabi-
lidade no planejamento e operagdo de sistemas energéticos sustentdveis. Como direcdes para
trabalhos futuros, recomenda-se a investigacdo de arquiteturas alternativas, tais como o uso de
Redes Neurais Recorrentes (RNNs), e adogdo de diferentes métodos de otimizagdo e ajuste de
hiperparametros. Além disso, para fortalecer a robustez e ampliar a capacidade de generalizagao,

¢ desejavel o uso desses modelos em bases de dados mais extensas e diversificadas.
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